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The transformer’s frequency equation is derived, under the constraint  

                of producing modal frequencies in the ratio of 1:2:3.  The derivation includes 
                the self-capacitance of the third inductor.  A computer-aided optimal design 
                method is disclosed and exercised which produces a circuit that obtains a 
                50:1 voltage gain.  The results are validated with an industry standard circuit 
                analysis computer program.  The purpose of this paper is to furnish an 
                automatic tool to design and investigate triple resonance transformer circuits. 
 
I. INTRODUCTION AND PREVIOUS WORK 
 
                The well-kown configuration of the Tesla transformer is the “dual resonance” form 
(possessing two modal frequencies in the ratio of 1:2).  The dual resonance transformer has been 
used as the high-voltage pulsed power supply for various directed energy concepts.  Abramyam 1 
furnishes a table of pulse powers obtained from a variety of Russian dual resonance equipment.  
Rohwein 2,3 of Sandia National Laboratory has successfully designed and demonstrated a 
compact 3 megavolt dual resonance transformer for the production of intense electron beams. 
                The more obscure configuration of the Tesla transformer is the “triple resonance” form 
(possessing three modal frequencies in the ratio of 1:2:3).  Figure 1 shows a schematic of the 
triple resonance transformer.  The magnetically coupled windings of Figure 1 are shown without 
an air core.  This is noted as there may be need for a ferrite core instead of the historical air core 
for the enhancement of magnetic coupling and the reduction of stray inductance. 
                The triple resonance transformer was invented by Tesla and used in his ground wave 
studies for radio development in Colorado Springs.  Historical notes 4 indicate Tesla was using 
the triple resonance concept in his New York laboratory prior to 1898.  The Colorado Springs 
experimental station was constructed in 1899.  Tesla 5 referred to the third inductor as the “extra 
coil,” which was “not in inductive relation to primary or secondary circuits.”  Tesla 5 referred to 
the triple resonance system as “a material and beautiful advance in the art.” 
                 Tesla did not produce a mathematical model of his final design of the Colorado 
Springs transformer, but did document the dimensions of the device.  Tesla obtained a patent 6 on 
his triple resonance device in 1914 (submitted in 1902). 
                 Golka 4 reproduced the Colorado Springs transformer from the original data archived 
in the Tesla museum in Belgrade.  Golka was probably the first researcher to find the three 
coupled tank circuits oscillated in the frequency ratio of 1:2:3 7.  The Golka device was improved 
and used by Mangold 7 and his engineering staff in Wendover, Utah. 
                Mangold 8 was a program manager of the Electromagnetic Hazards group of the 
Wright-Patterson Air Force Base.  Mangold housed Golka’s triple resonance device in a blimp  
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FIG. 1.  Circuit of the high-Q triple resonance Tesla transformer.  L 1 and C 1 are the inductance 
and capacitance of the primary tank circuit.  SG is a spark-gap switch.  L 2 and C 2 are the 
inductance and self-capacitance of the secondary inductor.  The secondary inductor is treated as 
a tank circuit.  The primary and secondary circuits are coupled by the magnetic flux threading 
both L 1 and L 2.  The coefficient of magnetic coupling between the primary circuit and the 
secondary circuit is k.  The magnetic coupling between the primary and secondary inductors is 
shown enhanced by a ferrite core.  In usual practice the core is air.  L 3 and C 3 are the inductance 
and self-capacitance of a third inductor.  The third inductor is treated as a tank circuit with its 
base connected to the output side of the secondary inductor.  The third inductor feeds the load 
capacitance C 4.  The oscillations within the circuit are initiated when the energy stored in C 1 is 
conducted into the circuit by commutation at the spark-gap switch.  The time dependent voltages 
across the primary circuit, secondary circuit, third inductor, and load capacitance during the 
oscillation are represented by V 1 ( t ), V 2 ( t ), V 3 ( t ), and V 4 ( t ).  The charging equipment to 
supply C 1 is not shown. 
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hanger, and evaluated the vulnerability of combat aircraft subjected to lightning attachment from 
October 1977 to January 1979. 
                In 1981 a Russian group 9 constructed a pulse generator, based upon driving a third 
inductor, with all the magnetic flux linked in ferrite, that produced pulses of approximately one-
half megavolt.  The oil filled device was about a quarter of a meter in diameter and slightly over 
a one-half meter long.  The miniature pulse generator relied upon a resonating rise of pulse 
power rather than the impulsive surge of power that is characteristic of the typical triple 
resonance transformers.  The Russian device did not address the self-capacitance of the third 
inductor. 
                The triple resonance concept was installed as the pulsed power supply in a double-
pulse electron beam accelerator, designated as MEDEA II, at the McDonnell-Douglas Research 
Laboratory in 1990.  The modifications and increase in MEDEA II’s efficiency are detailed in 
reference 10. 
                Bieniosek 11 gives a detailed discussion concerning the considerable advantages of the 
triple resonance transformer over the dual resonance transformer from a practical viewpoint. 
                The mathematical model of the Tesla transformer in its triple resonance form is not 
complete in regard to designing optimized high-performance circuits.  However, the dual 
resonance mathematical models are complete and fully useful as design tools 15-17.  The next 
section discusses some of the remaining mathematical modeling required for the synthesis of 
triple resonance transformers. 
                The author considers the present analysis an extension of the work of Bieniosek and de 
Queiroz 14.  de Queiroz treats the device as a pulse forming network, and references the original 
investigators. 
                As a point of interest, Tesla 5 produced patent drawing plates of various single 
terminal pulse forming lines.  Such pulse forming lines appeared many years later during the 
emergence of radar. 
 
 
II. PRELIMINARY DISCUSSION OF THE SUBJECT PROBLEMS 
 
                Finkelstein, Goldberg, and Shuchatowicz 16 showed in the dual resonance 
configuration that a voltage maximum occurred if the coexisting coupled modal frequencies 
within the circuit are in the ratio of 1:2.  Bieniosek 12 extended their work to the triple resonance 
machine and showed that complete energy transfer from primary energy store, C1, to the final 
load capacitance, C4, occurred when the coupled resonance frequencies are in the ratio of 1:2:3.  
Bieniosek patented 13 his mathematical relationships to obtain complete energy transfer.  Later de 
Queiroz 14 generalized Bieniosek’s work to include any number of cascaded tank circuits. 
                The previous investigators have not treated the self-capacitance of the third inductor in 
a clear and straightforward manner.  Previously the capacitance of the third inductor has been 
regarded as zero or obscurely “lumped” with other circuit parameters. 
                The present analysis treats the third inductor as the familiar parallel tank circuit, with 
C3 representing the third inductor’s self-capacitance.  This produces a more realistic model and 
exposes effects that have yet to be observed. 
                Medhurst’s 18 and Grover’s 19 work is very useful for the analysis and design of the 
circuit’s inductors. 
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               This paper is devoted to the development and demonstration of an automated method of 
designing optimized circuits for local or possibly grand maximum operating adjustments. 
                An analytical expression, such as equation ( 1 ), for the output voltage, V4 ( t ), across 
the load capacitance, C4, has yet to be developed.  For this reason a direct attack to find a 
relationship of circuit parameter values to produce a grand maximum in output voltage is 
currently not possible.  However, it is reasonable to assume that the expression for output 
voltage, V 4 ( t ), in the triple resonance device, equation ( 1 ), would functionally resemble the 
expression for output voltage in the dual resonance device 17, namely: 
 
                V4 ( t ) = f (V1, C1, L1, k, L2, C2, L3, C3, C4) g (ω1, ω2, ω3, t)    .                                ( 1 ) 
 
                Therefore, if solutions of the “frequency equation,” equation ( 2 ), of the circuit 
guaranteed the g-function to only possess the frequency ratio of 1:2:3 then the resulting circuit 
adjustment would produce a local or even a grand maximum in voltage gain (although the 
obtainment of a grand maximum could not be rigorously proven).  A potentially useful solution 
of the frequency equation is defined as any set of values for the arguments of the f-function that 
produce modal frequencies in the ratio of 1:2:3.  The voltage maxima of the three co-existing 
oscillations align, at a particular instant in time, and add to produce a voltage maximum.  This is 
the voltage maximum for the component values under consideration.  Different component 
values could produce higher or lower voltages, but for those particular components a modal 
frequency ratio of 1:2:3 produces the highest voltage obtainable. 
 
III. TRANSFORMER DESIGN USING NUMERICAL OPTIMIZERS 
 
A. Solution approach 
                This section discusses and demonstrates the use of a numerical optimizer to obtain 
values of the circuit components that will produce high gain systems utilizing the frequency 
equation.  A numerical optimizer is a computer program that searches for local extremum 
(maximum or minimum) of a function, analytical or computed indirectly, of which it is 
impossible or difficult to find the derivatives.  Any inequality constraints on the variables or 
functions of the variables may be included. 
                Optimization is a branch of mathematics unto itself, and falls into the broad discipline 
of Operations Research.  There are many optimizers on the market and no doubt there will be 
some that possess features that would be very useful for the problem at hand.  The optimizer 
chosen for this work was developed by Jacob 20 and deemed suitable for the “proof of concept” 
work demonstrated in this paper.  The present optimizer is designated by the United States 
Government to be “unrestricted and unlimited public distribution.” 
                The optimizer operates on the constrained frequency equation of an approximate 
circuit ( starting values ) and searches for a circuit, not far from the approximate circuit, that 
rigorously fulfills the desired modal frequency ratio. 
                Appendix A contains a fully functional Fortran IV program that produces an example 
circuit with a voltage gain of 50:1.  The results are verified using Pspice, an industry standard 
circuit simulator 22.  A comparison of performance may be had by noting that Bieniosek’s 
patented circuit 13 produces a voltage gain of 40:1.  These results are shown in a later section. 
                The present solution approach can be stated as follows: the optimizer program and a 
circuit analysis program are run in an iterative and investigative manner to search out a high 
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performance circuit and / or a circuit whose component values satisfy the designer’s needs.  The 
investigator’s task is greatly eased as the optimizer program only allows circuit component 
values that produce a modal frequency ratio of 1:2:3.  During the search the optimizer typically 
displaces the variables or arguments many thousands of times to move about the function space.  
A better result may sometimes be found by inputting the optimizer’s final results for the initial 
conditions in preparation for a repeated computation, and then displace one variable toward its 
boundary.  The “toggling” of the optimizer’s initial search position, in this manner, has led to 
desirable results. 
                The detailed derivation of the present frequency equation is given in Appendix C 
letting the reader study the heart of the design tool without being interrupted by the long 
intervention of the mathematical development. 
                The units in this discussion are microfarad, microhenry, Hertz, and seconds. 
 
                The 6th order frequency equation for the high - Q triple resonance circuit shown in 
figure 1 is: 
 
                { ( 1 - k2 ) L 1 L 2 L 3 C 1 [ C 2 C 3 + C 4 ( C 2 + C 3 ) ] } ω6 – 
 
                { ( 1 - k2 ) L 1 L 2 C 1 ( C 2 + C 4 ) + L 2 L 3 [ C 2 C 3 + C 4 ( C 2 + C 3 ) ] + 
 
                L 3 L 1 C 1 ( C 3 + C 4 ) } ω4 + 
 
                { L 1 C 1 + L 2 ( C 2 + C 4 ) + L 3 ( C 3 + C 4 ) } ω2 – 1 = 0           .                          (   2   ) 
 
                It is now stressed that the frequency equation will later be considered a cubic equation 
in ω 2.  This technique is old and well-known in oscillation and vibration analysis.  The cubic in 
ω 2 has sometimes been referred to the “frequency squared equation,” or the “z  equation 24.” 
                Denote the coefficient of ω6 as A, the coefficient of ω4

 as B, and the coefficient of ω2 
as C.  A > 0, B > 0, and C > 0 is assumed when writing equation ( 2 ).  The desired frequency 
ratio is guaranteed if a specific constraining condition between B and C and a separate specific 
constraining condition between A and C are concurrently satisfied, expressed functionally as: 
 
                u ( B, C ) = 0, and v ( A, C ) = 0  .                                                                          (   3   ) 
 
                A single constraint equation is formed by squaring both conditions and adding them, 
resulting in: 
 

FU = ( u ( B, C ) ) 2 + ( v ( A, C ) ) 2   .                                                                  (   4   ) 
 
                The expression of constraint is set equal to FU, which is its label in the computer 
program (see subroutine FN).  The object of the optimizer program is to search within the 
specified bounds of the arguments (electrical component values) of the coefficients (A, B, and C) 
to find a combination of argument values that forces FU to a minimum value close to zero.  
“Close to zero” may be defined as a small positive number on the order of 10-30.  Performing this 
task manually would be arguably impossible.  Upon producing a value of FU near zero, the 
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resulting optimized arguments or component values will produce a circuit that oscillates at the 
desired frequency ratio. 
               The resulting value of the C coefficient for which FU is near zero may be used to 
compute the fundamental modal frequency, FREQ1, of the circuit by the following equation: 
 
                FREQ1 = ( 106 / 2 π ) ( 1.166666 / C ½ )    Hertz      .                                             (   5   ) 
 
                FREQ1 is the variable label in the computer program and is derived in the next section. 
 
A..1 Derivation of the constraint equation.  
 
                The derivation of the constraint equation is now given so the basics of the optimization 
procedure can be understood.  This derivation could be put in an appendix, but its inclusion at 
this point is instructive so the investigator is able to see the frequency equation constrained to 
deliver only solutions that produce the desired modal frequency ratio. 
                It is required that the coexisting modal frequencies possess the following relationship: 
ω 2 / ω 1 = 2 and ω 3 / ω 1 = 3.  Therefore let (ω 2 / ω 1) 2 = x 2 / x 1 = 4 and (ω 3 / ω 1) 2 = x 3 / x 1 
= 9, or x 2 = 4 x 1 and x 3 = 9 x 1 .  Writing equation ( 2 ) in the frequency squared form, and 
using a textbook 21 knowledge of cubics yields: 
 
                y = x 3 – ( B / A ) x 2 + ( C / A ) x – ( 1 / A ) = ( x – x 1 ) ( x – x 2 ) ( x – x3 )     .   (   6   ) 
 
                The subscripted x’s are the 3 real and different roots of the cubic.  Each crossing of the 
x-axis, by the cubic, with y set to zero, corresponds to the square of a modal frequency.  The task 
at hand is to force the roots to have the relationship discussed in the second paragraph of this 
section. 
                Substitution of the subscripted x’s into the rightmost side of equation ( 6 ) yields: 
 
                y = x 3 – ( x 1 + x 2 + x 3 ) x 2 + ( x 1 x 2 + x 1 x 3 + x 2 x 3 ) x – x 1 x 2 x 3 
 
or,            y = x 3 – ( x 1 + 4 x 1 + 9 x 1 ) x 2 + ( 4 x 1 2 + 9 x 1 2 + 36 x 1 2 ) x – 36 x 1 3 

and finally: 
 
                y = x 3 – 14 x 1 x 2 + 49 x 1 2 x – 36 x 1 3               .                                                 (   7   ) 
 
                The square of the fundamental angular frequency, x 1 = ω 1 2 , can be found using 
equations ( 6 ) and ( 7 ) ; and recalling that A, B, and C correspond to the coefficients of the 
frequency equation, equation ( 2 ), as: 
 
                14 x 1 = B / A, or x 1 = B / ( 14 A)           .                                                              (   8   ) 
 
                The constraints on the coefficients (A, B, and C) of the frequency equation to obtain 
the frequency ratios set at the beginning of this discussion are found through the following 
manipulation.  Again, using the correspondences in equations ( 6 ), ( 7 ) and ( 8 ) yields: 
 
                49 x 1 2 = C / A, or ( 49 / ( 14 ) 2 ) ( B / A ) 2 = C / A, implies: B 2 = 4 A C             (  9  ) 
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and, 
                36 x 1 3 = 1 / A, or ( 36 / ( 14 )3) ( B / A ) 3 = 1 / A, implies: B 3 = 76.22… A 2 .   (  10  ) 
 
                A condition of constraint between B and C, and A and C can be obtained, in integers, 
by manipulating equation ( 9 ) and equation ( 10 ) to yield: 
 
                B = ( 72 / 343 ) C 2 and A = ( 1296 / 117649 ) C 3  .                                              (  11  )  
 
                The previously discussed single constraint equation, having the functional form given 
by equation ( 4 ) can now be written, using equation (11 ) as: 
 
                FU = (A – 0.0110158 C 3) 2 + (B – 0.2099125 C 2) 2     .                                       (  12  ) 
 
                The object of the optimizer program is to drive FU close to zero as discussed in the 
section on Solution approach. 
                Recalling equation ( 8 ), the fundamental modal frequency can be expressed as: 
 
                ω 1 2 = B / (14 A) =1.3611111 / C, or 2 π f 1 = 1.166666 / C ½       .                        (  13  ) 
 
Then the frequency, f 1, in Hertz can be written as: 
 
                f 1 = ( 10 6 / 2 π) (1.166666 / C ½ )   Hertz   .                                                          (  14  ) 
 
                Previously stated, in the program, f 1 is labeled as FREQ1.  The multiplication by 10 6 
is necessary to obtain Hertz as all the component values are in microhenry and microfarads. 
                Once FREQ1 has been computed; the other two frequencies are given simply as: 
 
                FREQ2 = 2*FREQ1, and FREQ3 = 3*FREQ1.                                                      (  15  ) 
 
                The optimizer program uses two sets of frequency equation coefficients to find the 
fundamental modal frequency.  The method of doing so is noted by inspecting equation ( 13 ).  
The use of two separate calculations provides a means of checking the results. 
                It is prudent and instructive to plot the cubic, equation ( 6 ), with the optimized 
numerical values of A, B, and C in place, to obtain the roots, and from the roots obtain the 
corresponding modal frequencies.  For example, the relation of the roots to the frequencies is f i 
(Hertz) = { ( x i ) 1 / 2 / ( 2 π ) } 10 6, with i = 1, 2, and 3.  The plot allows the investigator to not 
only directly observe the cubic and its functional character, but also provides another means of 
verifying the roots, and resulting frequencies.  A suitable plot program is GRAPHIT 23. 
 
A.2 Presentation of results concerning the automated design of optimized circuits. 
 
                The following gives the results using the optimizer on an example circuit.  The 
presentation of results is not premature since they precede the section containing a detailed 
description on the use of the program.  The resulting circuit from the optimizer is compared to 
Bieniosek’s patented results 13.  The comparison with Bieniosek’s results are interesting as it 
shows the utility of an optimizer in reference to the poorly understood triple resonance form.   
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FIG. 2.  GRAPHIT 21 plot of the cubic y = x 3 – 40. x 2 + 411. x – 875. = 0.  Note the roots x 1, x 
2, and x 3 have the relationship: x 2 = 4 x 1, and x 3 = 9 x 1.  The numerical value of the roots are: 
x 1 = 2.897, x 2 = 11.590, and x 3 = 26.078.  The frequencies in Hertz are found from the roots by 
the equation: f i = { ( x i ) 1 / 2 / ( 2 π ) } 10 6, with i = 1, 2 , and 3. 
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The selection of circuits is manifold, but a circuit close to Bieniosek’s gives the investigator an 
intuitive baseline and an appreciation of the usefulness of an optimizer as a design tool.  The 
plotted results are output from the OrCAD Pspice analysis (circuit simulator) which furnishes 
verification of the resulting circuit’s performance. 
                Verification of the roots and a plot of the cubic for the circuit under consideration is 
shown in Figure 2 as output from GRAPHIT 21. 
                The next section, section B, provides detailed instructions in the use of the 
optimization program. 
 

Table I.  A comparison of triple resonance circuits that obtain a 1:2:3 frequency ratio.  The 
asterisks indicate a slight change in notation, since Beniosek 11 and de Queiroz 23 did not 
have a self-capacitance for the third inductor. 

 

Values Bieniosek 11  de Queiroz 23  Optimizer 
C 1        0.2 uF            0.001 uF              0.299 uF 
C 2 267. pF     126.3 pF 157.6 pF 
C 3* 0.0                0.0           25.5 pF 
C 4* 125. pF              10. pF           60. pF 
L 1          0.93 uH            110. uH             0.87 uH 
L 2 675. uH            780.7 uH         639.9 uH 
L 3 810. uH        10130. uH         820. uH 
k     0.674               0.28131            0.666 
FREQ1 (…) Hz    200,000. Hz 270,911. Hz 
FREQ2 (…) Hz    400,000. Hz 541,823. Hz 
FREQ3           (…) Hz    600,000. Hz 812,735. Hz 
GAIN             40:1              10:1          50:1 

 
                After some numerical investigation with OrCAD Pspice and experimental runs with 
the optimization program, starting guesses for the component values or arguments were found.  
When the optimizer program was finally run; a value for FU equal to 0.205 x 10 – 50 was 
obtained along with the arguments listed in Table 1. 
                 The small value of FU indicated that the resulting arguments strongly fulfilled the 
constraining condition, equation ( 12 ), and the 1:2:3 frequency ratio was guaranteed. 
                The corresponding cubic, x 3 – 40. x 2 + 411. x – 875. = 0.0, was plotted using the 
GRAPHIT program.  The plot of the cubic and numerical values of its zero-crossings are shown 
in Figure 2.  The roots found through GRAPHIT were x 1 = 2.897, x 2 = 11.590, and x 3 = 
26.078.  Since ω 1 2 = x 1, ω 2 2 = x 2, and ω 3 2 = x 3; then f 1 = 270938. Hz, f 2 = 541875. Hz, and 
f 3 = 812814. Hz ( small errors were incurred as the zero-crossings were located with a manually 
manipulated pointer).  These roots also fulfill the requirement that 4 x 1 = x 2 and 9 x 1 = x 3 and 
give an alternative check on the program results.  
                The circuits, both Bieniosek’s and the optimizer’s were input to OrCAD Pspice to 
obtain plots of the time dependent voltages of the Tesla-transformer and across the load 
capacitance, C 4.  Bieniosek’s circuit response is shown in Figure 3.  The optimizer circuit 
response is shown in Figure 4.  In both circuits the initial voltage on the primary capacitor was a  
1000 volts.   
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FIG. 3.  Bieniosek’s triple resonance Tesla transformer circuit response 11 from discharging the 
energy stored in the capacitor of the primary circuit.  V 2 ( t ) is the time dependent voltage 
output between the secondary circuit and the third inductor.  V 4 ( t ) is the time dependent 
voltage across the load capacitance.  The voltage peaks in the circuit at 40 kilovolt.  The initial 
voltage of the primary capacitor is 1 kilovolt, so the voltage gain is 40:1. 
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FIG. 4.  The numerical optimizer’s triple resonance Tesla transformer circuit response from 
discharging the energy stored in the capacitor of the primary circuit.  V 2 ( t ) is the time 
dependent voltage output between the secondary circuit and the third inductor.  V 4 ( t ) is the 
time dependent voltage across the load capacitance.  The voltage peaks in the circuit at 50 
kilovolt.  The initial voltage of the primary capacitor is 1 kilovolt, so the voltage gain is 50:1. 
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Bieniosek’s circuit produced a gain of 40:1 (40,000 volt output) as he stated in reference 11, and 
the optimizer’s circuit produced a gain of 50:1 (50,000 volt output).  In both circuits the voltage 
maximum occurred in the first ½ cycle of oscillation (which is highly desireable).  de Queiroz 
reports a gain of 10:1 in reference 14, however, his component values were chosen not for large 
gains but to demonstrate the design of circuits possessing the frequency ratio of 1:2:3.  Reference 
26 contains a time dependent plot of de Queiroz’s circuit during its transient. 
                In this particular component selection the optimizer settled on a value of 25.5 pF for 
the self-capacitance for the third inductor.  According to reference 18 a solenoid of about one-half 
meter by one-half meter would fulfill the dimensional requirements to obtain 25.5 pF ( without 
utilizing more sophisticated winding geometries 30 ). 
 
B Use of the computer program 
 
B.1 Definitions of program control parameters. 
  
                 The source code for the triple resonance Tesla-transformer design program is located 
in Appendix A.  The program runs in quadruple precision to guarantee safety from “round off’ 
problems.  The quad precision command for the Lahey FORTRAN compiler 29 is: OPT.FOR  
{ space }-QUAD 
 
                The calling sequence from the main program is: 
 
                EXTERNAL FN 
                DIMENSION X(…), DX(…), S(…) 
                CALL EXTREM (FN, F1, F2, F3, K, X, DX, S, DFMAX, DXMAX, LMAX, FOPT, 
                                               IW, A, B, C, L, N), 
 
with:       FN – name of subroutine supplied by user to determine if the current arguments 
(component values) lie within the specified boundaries and, if yes, to evaluate the corresponding 
function value 
 
                 F1, F2, F3, - numerical function (FU) value feedthroughs for subroutine FN. 
 
                   K – positive number whose magnitude is the number of independent variables of the 
                          function; each variable corresponds to a circuit component. 
 
                   X – one - dimensional array whose K elements contain the initial guess arguments of 
                          the K independent variables.  At the end of the optimization they deliver the 
                          final values of those arguments 
 
                DX – one-dimensional array whose K elements define the K initial stepsizes along  
                          each variable about the initially guessed point. 
 
                    S – two-dimensional array defining the supplementary working space needed, it 
                          should be dimensioned (K, K + 3). 
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        DFMAX – stopping condition on function variation; the optimization procedure stops  
                           if during the last stage the variation of the function value was smaller than 
                           DFMAX. 
 
        DXMAX – stopping condition on arguments; the optimization procedure stops if during  
                            the last stage the absolute variation of the argument vector was smaller than 
                            DXMAX. 
 
           LMAX – stopping condition on number of stages; the optimization procedure stops if  
                            if the current number of stages is equal to the absolute value of LMAX.  The 
                            sign of LMAX indicates if a maximum is sought (positive sign) or a minimum 
                            (negative sign). 
 
              FOPT – Function value at the end of the optimization procedure.  FU is the function in 
                            the subroutine FN. 
 
                   IW – Writing instructions: 
 
                             ± 1 all outputs are suppressed (results e.g., transferred to main program) 
 
                             ± 2 final outputs only 
 
                             ± 3 outputs at the end of each stage 
 
                   The sign of this instruction indicates if boundaries are involved (positive sign) 
                   or not (negative sign). 
 
         Remark: The optimization procedure stops if at least one of the stopping conditions holds. 
 
B.2    Form of the program output 
 
        A sample of the computer program output containing the numerical data that produced the 
discussed 50:1 voltage gain is located in Appendix B.  However, for the sake of continuity the 
form of the program output is given below. 
 
VALUES OF THE COEFFICIENTS OF THE FREQUENCY EQUATION 
 
A= 
B= 
C= 
 
VALUES OF THE COEFFICIENTS USED TO FIND ROOTS OF THE CUBIC. 
 
B/A= 
C/A= 
1/A= 
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LIST MODAL FREQUENCIES IN HERTZ. 
 
FREQ1= 
FREQ2= 
FREQ3= 
 
STAGE NO. …                           TRIAL NO. …                                 DL = 
 
FU = hopefully “near zero”          AR (1) = optimized value of  k        DS (1) = 
                                                      AR (2) = optimized value of C 1      DS (2) = 
                                                      AR (3) = optimized value of L 1      DS (3) = 
                                                      AR (4) = optimized value of L 2      DS (4) = 
                                                      AR (5) = optimized value of L 3      DS (5) = 
                                                      AR (6) = optimized value of C 2      DS (6) = 
                                                      AR (7) = optimized value of C 3      DS (7) = 
 
DOUBLE CHECK FUNDAMENTAL FREQUENCY BY EQUATION 5. 
FREQ1= 
 
Where:                                          A, B, and C are coefficients of frequency equation 
                                                      DL= magnitude of the argument vector variation 
                                                               during the last stage. 
                                                      FU = current value of constraint equation 
                                                      AR (1) … AR (K) = optimized argument values (variables) 
                                                      DS (1) …  DS (K) = step sizes in the orthogonal 
                                                                                        secondary directions S (2) … S (K). 
                                                      FREQ1 is the fundamental freq. of coupled system in Hertz, 
                                                                   computed two different ways as a checking means. 
 
B.3    Subroutine for computing the function values and maintaining search within specified 
boundaries. 
 
                The user must supply a subroutine for the determination of the function values.  Any 
inequality constraints on the arguments or on the functions of the arguments may be introduced 
in this subroutine by setting LI = LI +1 (defined below) in the case that one or several of the 
current arguments lie on the wrong side of the specified boundaries.  In this case a special 
instruction, given below sends the flow back to the program EXTREM so that the function value 
is not computed.  New arguments will then be determined by the program EXTREM which 
would eventually not violate the boundaries. 
 
  This subroutine may have the following form: 
 
                      SUBROUTINE FN (AR, FU, LI, N, A1, B1, C1) 
                      DIMENSION AR (K)             [ notice K equal 7 in main program] 
                      SET BOUNDS ON CIRCUIT PARAMETERS UNDER STUDY 
                      IF (LOGICAL EXPRESSION) LI= LI + 1 
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                      IF (LI.GT.1) RETURN 
                      COMPUTE A1, B1, and C1 
                      FU = (A1 – 0.0110158*C1*C1*C1) 2 + (B1 – 0.2099125*C1*C1) 2
                      N = N + 1 
                      RETURN 
                      END 
 
with: 
         LOGICAL EXPRESSION – should be true if one or more of the arguments lie outside the 
                permissible bounds. 
         FU – function value computed within subroutine and corresponding to the current 
                arguments. 
         N – current number of trials (function evaluations) 
         A1, B1, C1 – feedthrough values of the coefficients of the frequency equation. 
 
         The constraints may be changed at each trial; they can be, as already noted, a function of 
         the current arguments, AR ( K ), K being the number of variables, or even of the current 
         function value, FU. 
         AR – subscripted value of the circuit parameters; which will appear in final printout. 
           F – feedthrough for computed function value FU 
 
B.4    Obtaining initial values for circuit parameters for program setup 
 
                The optimizer program requires initial guesses of the value of each parameter to be 
manipulated during the search in the bounded function space.  In this search for an optimized 
design of a specific triple resonance transformer there are seven variable parameters and one 
fixed parameter.  The fixed parameter is the electrostatic capacitance of a torus or “corona ring.”  
The torus is of a fixed dimension to house electrical apparatus and has a specified radius of 
curvature to guard against energy loss into the atmosphere by corona.  The torus is an 
“electrostatic insulator” and its radius of curvature is sized to inhibit corona losses up to a certain 
voltage limit.  The capacitance of the load, C4, is fixed as a constant of 60 picofarads 25 in the 
subroutine FN. 
                The seven variable parameters,( component values ), appear in the main program as 
subscripted variables X(1), X(2), X(3),…, X(7).  A difficulty in the use of the present optimizer 
is the guessed value for each variable parameter cannot be greatly different from its solution 
value.  Numerical experiments were not run to see how much error could be tolerated in the 
guessed value and still successfully obtain a solution.  In the final printout the optimized variable 
values, referred to as arguments, will appear in AR(1), AR(2), AR(3),…, AR(7) based upon the 
initial guesses of X(1), X(2),…, X(7). 
                The initial guesses were obtained by using some of Bieniosek’s relationships given in 
his patent 13 in combination with guesses based upon practical experience and numerical 
investigation.  Bieniosek’s relations were very useful even though there were seemingly great 
differences in the design of the two machines.  The most obvious requirement to be met was the 
modal frequency ratio of 1:2:3.  This was accomplished by writing the frequency equation so it 
would only deliver solutions in this desired frequency ratio, as discussed in previous sections.  
Next, it has been known for a long time that the coefficient of coupling, k, in the triple resonance 
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machine must be high.  Bieniosek recommends 0.68 in his paper 11 and patent 13, so X(1) was set 
to 0.68.  Numerical experimentation indicated that the primary capacitor, C1, could be much 
larger than Bieniosek’s recommendation of 0.2 microfarad and X(2) was set to 0.3 microfarad.  
The inductance of the primary winding, L1, was set to 0.87 microhenry (corresponding to one 
turn about 30 inches in diameter and 12 inches wide).  In numerical investigations the secondary 
inductance tended toward Bieniosek’s value of 675 microhenry and so X(4) was set to 660 
microhenry.  The same tendency occurred with the inductance of the third inductor; L3, so X(5) 
was set to 820 microhenry.  These starting values conform to Bieniosek’s relationship that L2 / L3 
= 5 / 6.   Numerical exploration suggested 170 picofarad to be a suitable initial guess for the self-
capacitance of the secondary inductor.  Bieniosek did not have a self-capacitance for the third 
inductor.  As stated before, this analysis properly treats the third inductor as a parallel tank 
circuit with self-capacitance, C3, and after some investigation X(7) was given a trial value of 25 
picofarad.  The third tank circuit ( third inductor ) feeds the load, C4, which has a fixed self-
capacitance of 60 picofarad and negligible inductance.  The load, C4, is the previously discussed 
aluminum torus of fixed size. 
                In closing this section on starting values for the optimizer’s search ; future 
investigations are somewhat expedited as Bieniosek’s component values from his patent and the 
values of the present work are available. 
 
B.5    Sample printout from Triple resonance Tesla transformer numerical optimizer 
 
                Appendix B contains the printout from the triple resonance Tesla-transformer 
numerical optimizer computer program.  The starting values and the description of the bounded 
multi-variable function has been given in subheadings B.3 and B.4.  The printout contains the 
data used in the plot program to find the roots of the cubic under examination in subheading A.2. 
 
B.6    Optimizer program test after installation 
 
                Install the optimizer program exactly as it is given in Appendix A.  Test the program 
by exercising it with the given starting values, ( see main program ) and bounds on the 
component values (see subroutine FN ). 
                The optimizer program should be run with the highest precision available to the 
investigator.  All the program results presented have been obtained with quadruple precision as 
previously discussed. 
                The output of the program will match the printout given in Appendix B if there are no 
typing or “round off” errors.  This is a simple way to test the program for proper installation and 
operation.  After this verification is completed the investigator is free to examine circuits without 
any hidden errors. 
 
IV DISCUSSION 
 
                The approach presented has shown success at a proof of concept level for the computer 
aided design of triple resonance Tesla transformers.  The optimizer produced results that exceed 
the performance of prior art by 25 percent.  The frequency equation used in this work accounts 
for the self-capacitance of the third inductor, which has not been fully addressed in the past 
investigations.  The solutions are guaranteed to have the modal frequency ratio of 1 : 2 : 3. 
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                The solution obtained reaches full voltage on the load capacitance, C 4, in the first one-
half cycle of oscillation.  Prolonged oscillation of the primary capacitor greatly stresses what is 
already a highly stressed component. 
                Experimentation with the optimizer has lead to some interesting questions; as the 
method allows some deeper insight into the triple resonance configuration.  One question is: 
could constraints be put on the frequency equation and move the cubic up or down so it cut the 
x-axis at one point, leading to a single frequency system?  Would such a device have any 
advantage? 
                Cursory investigation suggests that the third inductor in combination with the load 
capacity is a single stage pulse forming network.  This notion is reinforced by consulting Glasoe 
and Lebacqz 31 as they show if a single stage tank circuit is in series with a capacitance, the 
capacitance of the tank circuit should be one-half of the capacitance of the series capacitance for 
proper matching.  The capacitance of the third tank circuit found by the optimizer is roughly one-
half of the series load capacitance.  Noticing this relationship would lead one to assume the triple 
resonance Tesla transformer is a pulse transformer driving a pulse forming line.  Future work, 
that could prove useful, would be to install Glascoe and Lebacqz’s single stage pulse forming 
line as starting values (or fixed values ) in the optimizer and let it disclose a Tesla transformer 
matched to drive the line. 
                The present investigator sees two essential steps that should be of future concern to 
obtain a high performance device: above all, the governing equation for V 4 ( t ) in terms of all 
the circuit parameters must be developed.  Possession the governing equation allows for the 
possibility of finding a circuit adjustment that obtains a grand maximum in voltage gain.  
Presently, the circuit adjustment is known that produces a grand maximum in voltage gain for the 
dual resonance transformer 17.  It is not unusual to suppose the same could be found for the triple 
resonance configuration. 
                The second step involves construction practice.  Inductor winding geometries should 
be found that obtain exceedingly low electrical resistance, to obtain high Q circuits, while also 
achieving a very low, or controllable, self-capacitance.  It has been long known flat “ disk “ 
spirals possess low capacitance as long as they spiral deeply to their center 30.  Reference 30 
provides details concerning the construction of spiral disk inductors of controllable self-
capacitance. 
                The inductors should be placed an adequate distance above the floor to minimize the 
inductor’s electrostatic coupling with the ground plane. Coupling into conductive surroundings 
increases the self-capacitance of the inductors.  Any self-capacitance traps electrical energy and 
makes it unavailable for external use.  Significant inefficiencies are encountered as the stored 
energy increases by the square power of the operating voltage. 
               Reference 17 contains tuning information under the heading “Implementing the circuit 
adjustment.”  This same technique, with slight modification, may be used to install an adjustment 
in the triple resonance configuration.  In the present case, after the coefficient of coupling is set, 
three resonating frequencies (in the ratio of 1 : 2 : 3 ) are sought as the investigator sweeps across 
the spectrum of interest with a test signal generator, instead of the two resonating frequencies of 
the dual resonance configuration. 
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APPENDIX A – Source code for triple resonance Tesla transformer optimizer 
 
C     "OPT.FOR" IS THE OPTIMIZER SOURCE PROGRAM FOR THE TRIPLE 
RESONANCE 
C     TRANSFORMER. IT RUNS UNDER LAHEY/FUJITSU FORTRAN LF95 EXPRESS 
v5.7: 
C     LAHEY COMPUTER SYSTEMS, 865 TAHOE BLVD, SUITE 214, INCLINE VILLAGE, 
C     NAVADA 89450. THE OPT PGM RUNS IN QUADRUPLE PRECISION. 
C 
C     FURTHER ANALYSIS AND PLOTTING OF RESULTS ARE OBTAINED THROUGH 
THE USE 
C     OF "OrCAD PSpice." OrCAD IS LOCATED AT 9300 SW NIMBUS AVE., 
BEVERTON,OR 
C     97008. CORPORATE OFFICE PHONE: (503) 671-9500 
C 
C 
C     CALLING PROGRAM, UNITS ARE MICRO-HENRY AND MICRO-FARAD 
C          
      IMPLICIT REAL*8(A-H,O-Z) 
      EXTERNAL FN 
      DIMENSION X(7),DX(7),S(7,10),AR(7) 
C 
C     SET INITIAL GUESSES AT CIRCUIT PARAMETERS (MUST BE ZEAR) 
C 
      K=7 
      X(1)=0.68 
      X(2)=0.30 
      X(3)=0.87 
      X(4)=660. 
      X(5)=820. 
      X(6)=0.000170 
      X(7)=0.000025 
C 
C     SET SIZE OF SEARCH STEP FOR EACH PARAMETER 
C 
      DX(1)=0.001 
      DX(2)=0.01 
      DX(3)=0.001 
      DX(4)=0.001 
      DX(5)=1. 
      DX(6)=0.000001 
      DX(7)=0.0000001 
C 
C     STOPPING CONDITION ON CONSTRAINT FUNCTION VARIATION 
C 
      DFMAX=1.E-50 
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C 
C     STOPPING CONDITION ON SEARCH STEP SIZE 
C 
      DXMAX=1.E-50 
C 
C     STOPPING CONDITION ON SEARCH ITERATIONS 
C     NEGATIVE FOR MINIMIZE, POSITIVE FOR MAXIMIZE 
      LMAX=-10000 
C 
C     IF IW=3, THEN WRITE RESULTS TO SCREEN. 
      IW=1 
C 
C     CALL OPTIMIZER 
C 
      CALL EXTREM(FN,F1,F2,F3,K,X,DX,S,DFMAX,DXMAX,LMAX,FOPT,IW 
     1,A,B,C,L,N) 
C 
      WRITE(*,*)' ' 
      WRITE(*,*)'VALUES OF THE COEFFICIENTS OF THE FREQUENCY EQUATION' 
      WRITE(*,*)' ' 
      WRITE(*,*)'A=',A 
      WRITE(*,*)'B=',B 
      WRITE(*,*)'C=',C 
      WRITE(*,*)' ' 
C 
C     CUBIC HAS FORM Y=1.0*X**3-(B/A)*X**2+(C/A)*X-(1/A) 
      WRITE(*,*)' ' 
      WRITE(*,*)'VALUE OF COEF OF X CUBED TERM OF CUBIC,XCC' 
      WRITE(*,*)'XCC=1.0' 
      WRITE(*,*)'VALUE OF COEF OF X SQUARED TERM OF CUBIC,XSC' 
      XSC=-(B/A) 
      WRITE(*,*)'XSC=',XSC 
      WRITE(*,*)'VALUE OF COEF OF X TERM OF CUBIC,XC' 
      XC=(C/A) 
      WRITE(*,*)'XC=',XC 
      WRITE(*,*)'VALUE OF Y-INTERCEPT TERM OF CUBIC,YIT' 
      YIT=-(1./A) 
      WRITE(*,*)'YIT=',YIT 
C 
      WRITE(*,*)' ' 
      WRITE(*,*)'VALUES OF THE COEFFICIENTS USED TO FIND ROOTS OF CUBIC' 
      WRITE(*,*)' ' 
      WRITE(*,*)'-(B/A)=',XSC 
      WRITE(*,*)'(C/A)=',XC 
      WRITE(*,*)'-(1./A)=',YIT 
      WRITE(*,*)' ' 
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      WRITE(*,*)'LIST MODAL FREQUENCIES IN HERTZ' 
      WRITE(*,*)' ' 
      FREQ1=(1000000./(2.*3.14159))*SQRT(ABS(XSC/14.)) 
      WRITE(*,*)'FREQ1=',FREQ1 
      FREQ2=2.*FREQ1 
      WRITE(*,*)'FREQ2=',FREQ2 
      FREQ3=3.*FREQ1 
      WRITE(*,*)'FREQ3=',FREQ3 
C 
      WRITE(*,*)' '       
      WRITE(*,23)L,N,S(1,3),F2,(I,X(I),I,DX(I),I=1,K) 
   23 FORMAT(//1X,9HSTAGE NO.,I3,10X,9HTRIAL NO.,I6,12X,3HDL=E15.8,/1X, 
     13HFU=E15.8,/(23X,3HAR(,I2,2H)=,E15.8,5X,3HDS(,I2,2H)=,E15.8)) 
C 
C     COMPUTE FUNDEMENTAL FREQUENCY IN HERTZ USING COEFFICIENT "C"  
C     THE FREQUENCY EQUATION. THIS IS EQUATION (5) IN THE TEXT. 
C 
      WRITE(*,*)' ' 
      WRITE(*,*)'DOUBLE CHECK FUNDAMENTAL FREQUENCY BY EQN. 5' 
      FREQ12=(1000000./(2.*3.14159))*(1.166666/SQRT(C)) 
      WRITE(*,*)' ' 
      WRITE(*,*)'FREQ1=',FREQ12 
C        
      END 
 
      SUBROUTINE EXTREM(FN,F1,F2,F3,K,X,DX,S,DFMAX,DXMAX,LMAX,FOPT,IW 
     1,A,B,C,L,N) 
C 
C     FINDING AN EXTREMUM OF A BOUNDED MULTIVARIABLE FUNCTION  
C     WITHOUT DETERMINATION OF THE DERIVATIVES 
C 
C     PROGRAM SOURCE IS NASA TECHNICAL NOTE D-6978, "AN ENGINEERING 
C     OPTIMIZATION METHOD WITH APPLICATION TO STOL-AIRCRAFT APPROACH 
C     AND LANDING TRAJECTORIES," BY HEINRICH G. JACOB (1972), AMES 
C     RESEARCH CENTER, MOFFETT FIELD, CA 94035. 
C   
      IMPLICIT REAL*8(A-H,O-Z)  
      DIMENSION X(7),DX(7),S(7,10),AR(7) 
      K=7   
      L=0                                             
      LI=1                                           
      N=0                                                
      DO 1  I=1,K                                        
      S(I,1)=X(I)                  
   1  S(I,2)=X(I)-DX(I)              
      CALL FN(X,F2,LI,N,A,B,C) 
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      FE=F2                                                                 
      IF(LI.GT.1)WRITE(6,2)                                    
   2  FORMAT(1X,'INITIAL ARGUMENTS OUTSIDE BOUNDARIES')          
   3  IF(KC.GE.K.OR.KC.LT.0.OR.L.EQ.0)KC=0                      
      KC=KC+1                                                    
      S(1,3)=0.                                                   
      DO 4  I=1,K                                                   
      S(I,4)=S(I,1)-S(I,2)                                         
   4  S(1,3)=S(1,3)+S(I,4)**2                                       
      S(1,3)=SQRT(S(1,3))                                                
      IF(IABS(IW).GE.3)WRITE(6,23)L,N,S(1,3),F2,(I,X(I),I,DX(I),I=1,K) 
      IF(L.GE.IABS(LMAX).OR.S(1,3).LT.DXMAX.OR. ABS(FF-FOPT) 
     1.LT.DFMAX.AND.L.GT.0.OR.(LI.GT.1.AND.L.EQ.0))GOTO22 
      IF(K.EQ.1)GOTO9                                                
      DO 8  J=2,K                                                       
      KD=-2+J+KC                                                        
      IF(KD.GT.K)KD=KD-K                                                 
      S(J,3)=0.                                                         
      DO 7  I=1,K                                                      
      S(I,J+3)=0.                                                       
      IF(I.EQ.KD)S(I,J+3)=S(1,3)                                      
      JM=J-1                                                           
      DO 6  JK=1,JM                                                      
   6  S(I,J+3)=S(I,J+3)-S(KD,JK+3)*S(1,3)/S(JK,3)*S(I,JK+3)/S(JK,3)     
   7  S(J,3)=S(J,3)+S(I,J+3)**2                                        
      S(J,3)= SQRT(S(J,3))                                                                                          
      IF(S(J,3).LT.1.D-30)GOTO3                                    
   8  CONTINUE                                                   
   9  DO 10  I=1,K                                             
  10  S(I,2)=S(I,1)                                             
      L=L+1                                                            
      FF=FOPT                                                           
      DO 21 M=1,K                                                     
      DO 11 I=1,K                                                       
  11  S(I,M+3)=S(I,M+3)/S(M,3)*DX(M)                                   
      IF(IW.GT.0)LI=3                                                   
  12  IF (IW.GT.0)LI=LI-1                                              
      LJ=LI                                                             
      DO 13 I=1,K                                                     
      X(I)=S(I,1)-S(I,M+3)                                             
  13  S(I,M+3)=S(I,1)-X(I)                                              
      CALL FN(X,F1,LI,N,A,B,C)                                                
      BO=1.                                                              
  14  DO 15 I=1,K                                                       
      X(I)=S(I,1)+S(I,M+3)/BO                                          
  15  S(I,M+3)=X(I)-S(I,1)                                            
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      IF(ABS(BO).GT.1.1)GOTO20                                                           
      CALL FN(X,F3,LJ,N,A,B,C)                                               
      IF(LI+LJ.EQ.4)GOTO12                                            
      IF(LJ.GT.2)BO=-4.                                                
      IF(LI.GT.2)BO=+4.                                               
      IF(LI.GT.2.OR.LJ.GT.2)GOTO14                                  
  16  ST=0.                                                           
      DO 18 I=1,K                                                    
      X(I)=S(I,1)                                                     
      IF(ABS(S(I,M+3)).LT.1.E-30)GOTO18                                                            
      S(I,M+3)=S(I,M+3)/LI                                              
      IF(ABS(2.*F2-F1-F3).LT.1.E-30)GOTO18                               
      X(I)=S(I,1)+S(I,M+3 )/ ABS(F1-2.*F2+F3)*(F3-F1)/ISIGN(2,LMAX)          
  18  ST=ST+(X(I)-S(I,1))**2                                            
      IF(16.*ST.LT.DX(M)**2)DX(M)=DX(M)/4.                               
      IF(ST.LT.400.*DX(M)**2.AND. ABS(2.*F2-F1-F3).GE.1.E-30)GOTO20            
      DO 19 I=1,K                                                       
      IF( ABS(S(I,M+3)).LT.1.E-30)GOTO19                             
      X(I)=S(I,1)+ SIGN(S(I,M+3),(F3-F1)/S(I,M+3))*ISIGN(20,LMAX)               
  19  CONTINUE                                                           
      DX(M)=DX(M)*2.                                                       
  20  LI=+1                                                              
      BO=-BO                                                              
      IF(ABS(BO).GT.1.1)DX(M)=DX(M)/3.                                   
      CALL FN(X,FOPT,LI,N,A,B,C)                                                   
      IF(LI.GT.1)LI=10                                                      
      IF(ISIGN(1,LMAX)*(FOPT-F2).LT.- ABS(FE-F2)*4..AND.LI.NE.10)LI=2       
      IF(LI.GT.1.AND. ABS(BO).GT.1.1)GOTO14                                                             
      IF(LI.GT.1)GOTO16                                               
      FE=F2                                                             
      F2=FOPT                                                       
      DO 21 I=1,K                                                      
  21  S(I,1)=X(I)                                                       
      GOTO3                                                             
  22  IF(IABS(IW).EQ.2)WRITE(6,23)L,N,S(1,3),F2,(I,X(I),I,DX(I),I=1,K)  
  23  FORMAT(//1X,9HSTAGE NO.,I3,10X,9HTRIAL NO.,I6,12X,3HDL=E15.8,/1X, 
     13HFU=E15.8,/(23X,3HAR(,I2,2H)=,E15.8,5X,3HDS(,I2,2H)=,E15.8))     
      RETURN 
      END 
C 
C     FU IS THREE WINDING CONSTRAINT EQUATION VALUE. FU MUST BE DRIVEN 
TO ZERO 
C     TO OBTAIN FREQUENCY RATIO OF 1:2:3.  
C     UNITS ARE MICRO-FARAD AND MICRO-HENRY 
C 
      SUBROUTINE FN(AR,FU,LI,N,A1,B1,C1) 
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      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION AR(7) 
C 
C     AR(1)=k,COUPLING COEF.,AR(2)=C1,PRIMARY CAPACITY, 
C     AR(3)=L1,PRIMARY INDUCTANCE,AR(4)=L2,SECONDARY INDUCTANCE, 
C     AR(5)=L3,EXTRA COIL INDUCTANCE,AR(6)=C2,SECONDARY COIL CAPACITY, 
C     AR(7)=C3,EXTRA COIL CAPACITY, AR8=C4,FIX TORUS CAPACITY AT 60 
PICOFARAD 
C 
C     COMPUTE VALUE OF COEFFICIENTS OF FREQUENCY EQUATION. A1,B1, AND 
C1 
C     ARE FEEDTHROUGH VARIABLES TO GET VALUES TO A,B, AND C. 
C 
      A1=(1.-AR(1)**2.)*AR(3)*AR(4)*AR(5)*AR(2) 
     1*(AR(6)*AR(7)+AR8*(AR(6)+AR(7)))      
C 
      B1=(1.-AR(1)**2.)*AR(3)*AR(4)*AR(2)*(AR(6)+AR8) 
     1+AR(4)*AR(5)*(AR(6)*AR(7)+AR8*(AR(6)+AR(7))) 
     1+AR(5)*AR(3)*AR(2)*(AR(7)+AR8) 
C 
      C1=AR(3)*AR(2)+AR(4)*(AR(6)+AR8)+AR(5) 
     1*(AR(7)+AR8) 
C 
C     SQUARE THE TWO CONSTRAINT EQNS AND ADD TO FORM ONE CONSTRAINT 
C     EQUATION THAT WILL YIELD ONLY POSITIVE NUMBERS. CONSTRAINT 
C     CAN BE DRIVEN TO ZERO WITHOUT OSCILLATING AROUND ZERO. 
C 
C     CONSTRAINT EQN. DRIVEN NEAR ZERO FOR 1:2:3 FREQUENCY RATIO. 
C 
      FU=(A1-0.0110158*C1*C1*C1)**2.+(B1-0.2099125*C1*C1)**2. 
C 
C     SET BOUNDS ON CIRCUIT PARAMETERS UNDER STUDY 
C 
C     ON THE COUPLING COEFFICIENT, k 
C 
      IF(AR(1).LT.0.60)LI=LI+1 
      IF(AR(1).GT.0.70)LI=LI+1 
C 
C     ON PRIMARY CAPACITY, C1 
C 
      IF(AR(2).LT.0.1)LI=LI+1 
      IF(AR(2).GT.5.0)LI=LI+1 
C 
C     ON PRIMARY INDUCTANCE, L1 
C 
      IF(AR(3).LT.0.2)LI=LI+1 
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      IF(AR(3).GT.1.6)LI=LI+1 
C 
C     ON SECONDARY INDUCTANCE, L2 
C 
      IF(AR(4).LT.100.)LI=LI+1 
      IF(AR(4).GT.1000.)LI=LI+1 
C 
C     ON EXTRA COIL INDUCTANCE, L3 
C 
      IF(AR(5).LT.100.)LI=LI+1 
      IF(AR(5).GT.1500.)LI=LI+1 
C 
C     ON SECONDARY CAPACITY, C2 
C           
      IF(AR(6).LT.0.000140)LI=LI+1 
      IF(AR(6).GT.0.000300)LI=LI+1 
C 
C     ON EXTRA COIL CAPACITY, C3 
C 
      IF(AR(7).LT.0.000010)LI=LI+1 
      IF(AR(7).GT.0.000050)LI=LI+1 
C 
C     IN THIS CASE THE ELECTROSTATIC CAPACITY OF TORUS 
C     OR "CORONA RING," C4,IS FIXED AT 60. PICOFARAD 
C 
      AR8=60.E-6 
C 
      N=N+1 
      RETURN 
      END                                             
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APPENDIX B: Printout of optimizer program 
 
 

VALUES OF THE COEFFICIENTS OF THE FREQUENCY EQUATION 
 
A= 1.1419662137064582111229713460719029E-0003 
B= 4.6322974941444858295613304934192958E-0002 
C= 0.46976328500203289817226735128276110 
 
 
VALUE OF COEF OF X CUBED TERM OF CUBIC,XCC 
XCC=1.0 
VALUE OF COEF OF X SQUARED TERM OF CUBIC,XSC 
XSC= -40.564225443321349957781618482774038 
VALUE OF COEF OF X TERM OF CUBIC,XC 
XC= 411.36355818910881799688517190912264 
VALUE OF Y-INTERCEPT TERM OF CUBIC,YIT 
YIT= -875.68264979952327338357549590209919 
 
VALUES OF THE COEFFICIENTS USED TO FIND ROOTS OF CUBIC 
 
-(B/A)= -40.564225443321349957781618482774038 
(C/A)= 411.36355818910881799688517190912264 
-(1./A)= -875.68264979952327338357549590209919 
 
LIST MODAL FREQUENCIES IN HERTZ 
 
FREQ1= 270911.89522688353017400977442041161 
FREQ2= 541823.79045376706034801954884082322 
FREQ3= 812735.68568065059052202932326123478 
 
 
 
STAGE NO. 23          TRIAL NO.  1123            DL= 0.52937511E-24 
FU= 0.20533547E-50 
                      AR( 1)= 0.66615158E+00     DS( 1)= 0.13234890E-25 
                      AR( 2)= 0.29914793E+00     DS( 2)= 0.85100886E-29 
                      AR( 3)= 0.87003732E+00     DS( 3)= 0.64623485E-29 
                      AR( 4)= 0.63999109E+03     DS( 4)= 0.45387139E-29 
                      AR( 5)= 0.82001986E+03     DS( 5)= 0.15564863E-29 
                      AR( 6)= 0.15767442E-03     DS( 6)= 0.82718061E-30 
                      AR( 7)= 0.25587853E-04     DS( 7)= 0.16543612E-30 
 
DOUBLE CHECK FUNDAMENTAL FREQUENCY BY EQN. 5 
 
FREQ1= 270911.53966099899315055165844413704 
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APPENDIX C: Derivation of the frequency equation 
 
                Develop the circuit equations for the triple resonance circuit shown in Figure 1, based 
upon the following basic electrical quantities; Q is electric charge, V is voltage, C is capacity, I is 
current, k is the magnetic coupling coefficient, M is the mutual inductance, and L is inductance. 
                It is very important to recognize that both theoretically and practically there is no 
magnetic coupling between the third tank circuit and the other two tank circuits of Figure 1. 
                The basic relationships of the electric quantities and the circuit components are given 
by equation sets ( A – 1 ) and ( A – 2 ) as: 
 
                Q 1 = C 1 V 1, Q 2 = C 2 V 2, Q 3 = C 3 V 4, Q 4 = C 4 V4, k = M / ( L 1 L 2 ) ½  ( A – 1 ) 
 
or in terms of the currents and corresponding time derivatives of the voltages: 
 
                 I 1 = C 1 V′1, I 2 = C 2 V′2, I 3 = C 3 V′3, I 4 = C 4 V′4, k 2 = M 2 / ( L 1 L 2 )     .  (A – 2  ) 
 
                The initial conditions in the circuit, at time t = 0; before conduction at the spark-gap 
switch are: 
 
                I 1 = I 2 = I 3 = I 4 = 0, Q 1 ≠ 0, Q 2 = Q3 = Q 4 = 0; and, V 1 = V 0                      ( A – 3  ) 
 
                Write the circuit equations by summing to zero the voltage drops around each of the 
four circuit loops shown in Figure 1. 
 
                Q 1/ C 1 + L 1 I′1 + M ( I′2 + I′4 ) = 0                                                                     ( A – 4 ) 
 
                Q 2 / C 2 + L 2 ( I′2 + I′4 ) + M I′1 = 0                                                                    ( A – 5 ) 
 
                Q 3 / C 4 + L 3 ( I′3 + I′4 ) = 0                                                                                ( A – 6 ) 
 
                Q 4 / C 4 – Q 3 / C 3 – Q 2 / C 2 = 0        .                                                               ( A – 7 ) 
 
The mutual inductance, M, is either positive or negative according to the passing of the magnetic 
flux through the coupled windings in the same or opposite directions. 
 
                Written in terms of voltages and their second time derivatives of voltage: 
 
                V 1 + L 1 C 1 V″1 + M ( C 2 V″2 + C 4 V″4 ) = 0                                                    ( A – 8) 
 
                V 2 + L 2 ( C 2 V″2 + C 4 V″4 ) + M C 1 V″1 = 0                                                   ( A – 9 ) 
 
                V 3 + L 3 ( C 3 V″3 + C 4 V″4 ) = 0                                                                       ( A – 10) 
 
                V 4 = V 2 + V 3       .                                                                                             ( A – 11) 
 

 27



                The system of equations, ( A- 8 ) through ( A – 11 ) is simplified by inserting equation 
( A – 11 ) into equations ( A – 8 ) through ( A – 10 )  This reduces the circuit equations to a 
system of three second order simultaneous differential equations, namely: 
 
                V 1 + L 1 C 1 V″1 + M ( C 2 + C 4 ) V″2 + M C 4 V″3 = 0                                 ( A – 12 ) 
 
                V 2 + M C 1 V″1 + L 2 ( C 2 + C 4 ) V″2 + L 2 C 4 V″3 = 0                                 ( A – 13 ) 
 
                V 3 +      0           + L 3 C 4 V″2               + L 3 ( C 3 + C 4 ) V″3 = 0        .          ( A – 14 ) 
 
                A set of trial solution equations must be constructed that will satisfy the system ( A – 
12 ) through ( A – 14 ) along with the attendant initial conditions.  The construction of these trial 
equations is based upon a background of previous solutions.  It is known there are three modal 
frequencies in the coupled system, namely: 0 < ω 1 < ω 2 < ω 3.  It is also known that the primary 
energy storage capacitor voltage decays cosinusoidally as it dumps its energy into the system, 
while the voltage in the secondary inductance rises sinusoidally.  The voltage in the third tank 
circuit oscillates in sinusoidal manner as shown in the previous work 12, 26. However, in this 
analysis there is an additional variable, the distributed capacitance of the third inductor.  The trial 
solution used in this analysis is written in terms of angular frequencies as follows: 
 
                V 1 ( t ) = a 1 cos ω 1 t + b 1 sin ω 1 t + c 1 cos ω 2 t + d 1 sin ω 2 t + 
                                e 1 cos ω 3 t + f 1 sin ω 3 t                                                             ( A – 15 ) 
 
                V 2 ( t ) = a 2 cos ω 1 t + b 2 sin ω 1 t + c 2 cos ω 2 + d 2 sin ω 2 t + 
                                e 2 cos ω 3 t + f 2 sin ω 3 t                                                             ( A – 16 ) 
 
                V 3 ( t ) = a 3 cos ω 1 t + b 3 sin ω 1 t + c 3 cos ω 2 t + d 3 sin ω 2 t + 
                                e 3 cos ω 3 t + f 3 sin ω 3 t     .                                                        (A – 17 ) 
 
                In the above trial solution the ω ’s are the three distinct angular frequencies and the 
subscripted a’s, b’s, c’s, d’s, e’s and f ’s are distinct amplitudes for the sine and cosine functions 
of ω i t, where i = 1, 2, and 3. 
                Substitute the initial voltage conditions into the trial solutions, ( A – 15 ) through ( A – 
17 ), for time, t, equal zero and there results: 
 
                V 1 ( 0 ) = V 0 , implies a 1 + c 1 + e 1 = V 0                                                       ( A – 18 ) 
 
                V 2 ( 0 ) = 0 ,    implies a 2 + c 2 + e 2 = 0                                                           ( A – 19 ) 
 
                V 3 ( 0 ) = 0 ,    implies a 3 + c 3 + e 3 = 0      .                                                    ( A – 20 ) 
 
Equations ( A – 18 ) through ( A – 20 ) are the voltage conditions at t = 0.  Note all the sine terms 
vanish at t = 0. 
                Substitute the initial voltage conditions into the first time derivatives of voltage of the 
trial solutions, (A – 15 ) through ( A – 17 ), for time, t, equal zero and there results: 
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                V′ 1 ( 0 ) = 0 , implies b 1 ω 1 + d 1 ω 2 + f 1 ω 3 = 0                                           ( A – 21 ) 
 
                V′ 2 ( 0 ) = 0 , implies b 2 ω 1 + d 2 ω 2 + f 2 ω 3 = 0                                           ( A – 22 ) 
 
                V′ 3 ( 0 ) = 0 , implies b 3 ω 1 + d 3 ω 2 + f 3 ω 3 = 0       .                                   ( A – 23 ) 
 
                Equations ( A – 21 ) through ( A – 23 ) are the electric current conditions at t = 0.  
Note all the sine terms again vanish at t = 0. 
                Substitute the trial solutions into the first circuit equation ( A – 12 ), which results in: 
 
                ( a 1 cos ω 1 t + b 1 sin ω 1 t + c 1 cos ω 2 t + d 1 sin ω 2 t + e 1 cos ω 3 t +  
 
                f 1 sin ω 3 t ) – L 1 C 1 ( a 1 ω 1 2 cos ω 1 t + b 1 ω 1 2 sin ω 1 t + c 1 ω 2 2 cos ω 2 t + 
 
                d 1 ω 2 2 sin ω 2 t + e 1 ω 3 2 cos ω 3 t + f 1 ω 3 2 sin ω 3 t ) – M ( C 2 + C 4 ) 
 
                ( a 2 ω 1 2 cos ω 1 t + b 2 ω 1 2 sin ω 1 t + c 2 ω 2 2 cos ω 2 t + d 2 ω 2 2 sin ω 2 t + 
 
                  e 2 ω 3 2 cos ω 3 t + f 2 ω3 2 sin ω 3 t ) – M C 4 ( a 3 ω 1 2 cos ω 1 t +  
 
                  b 3 ω 1 2 sin ω 1 t + c 3 ω 2 2 cos ω 2 t + e 3 ω 3 2 cos ω 3 t +  
 
                  f 3 ω 3 2 sin ω 3 t ) = 0                                                                                        ( A – 24 ) 
 
                Equation ( A – 24 ) executes harmonic angular frequencies, ω 1, ω 2, and ω 3; both as 
sinusoidal and cosinusoidal functions, with different amplitudes, a i , b i , c i , d i , e i , and f i , 
where i = 1, 2, and, 3.  During the oscillation the sum of the terms at all times is equal to zero.  
This characteristic allows equation ( A – 24 ) to be written as a homogenous equation 27 as: 
 
{ ( 1 – L 1 C 1 ω 1 2 ) a 1 – M ( C 2 + C 4 ) ω 1 2 a 2 – M C 4 ω 1 2 a 3 } cos ω 1 t +              ( A – 25 ) 
 
{ ( 1 – L 1 C 1 ω 1 2 ) b 1 – M ( C 2 + C 4 ) ω 1 2 b 2 – M C 4 ω 1 2 b 3 } sin ω 1 t +              ( A – 26 ) 
 
{ ( 1 – L 1 C 1 ω 2 2 ) c 1 – M ( C 2 + C 4 ) ω 2 2 c 2 – M C 4 ω 2 2 c 3 } cos ω 2 t +              ( A – 27 ) 
 
{ ( 1 – L 1 C 1 ω 2 2 ) d 1 – M ( C 2 + C 4 ) ω 2 2 d 2 – M C 4 ω 2 2 d 3 } sin ω 2 t +              ( A – 28 ) 
 
{ ( 1 – L1 C 1 ω 3 2 ) e 1 – M ( C 2 + C 4 ) ω 3 2 e 2 – M C 4 ω 3 2 e 3 } cos ω 3 t +               ( A – 29 ) 
 
{ ( 1 – L 1 C 1 ω 3 2 ) f 1 – M ( C 2 + C 4 ) ω 3 2 f 2 – M C 4 ω 3 2 f 3 } sin ω 3 t = 0   .         ( A – 30 ) 
 
                Since the above equation must be satisfied for all values of time, t, the expressions 
within the brackets ( A – 25 ) through ( A – 30 ) must be zero 28 since ω 1 : ω 2 : ω 3 will be taken 
in the ratio of 1 : 2 : 3, each of the above time dependent functions is orthogonal to the others and 
so the bracketed expressions must vanish 28. 
                The zeroed-brackets (A – 25 ) through ( A – 30 ) can be simplified by letting: 
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                α i = ( 1 – L 1 C 1 ω i 2 ) / (M ω i 2 C 4), i = 1, 2, 3, and C* 2 = C 2 / C 4              ( A – 31 ) 
 
and writing the zeroed-bracketed expressions ( A – 25 ) through ( A – 30 ) as: 
 
                α 1 a 1 = ( C * 2 + 1) a 2 + a 3                                                                             ( A – 25' ) 
 
                α 1 b 1 = ( C * 2 + 1 ) b 2 + b 3                                                                            ( A – 26' ) 
 
                α 2 c 1 = ( C * 2 + 1 ) c 2 + c 3                                                                            ( A – 27' ) 
 
                α 2 d 1 = ( C * 2 + 1) d 2 + d 3                                                                             ( A – 28' ) 
 
                α 3 e 1 = ( C * 2 + 1 ) e 2 + e 3                                                                            ( A – 29' ) 
 
                α 3 f 1 = ( C * 2 + 1 ) f 2 + f 3                                                                              ( A – 30' ) 
 
Note that the simplified form of zeroed-brackets ( A – 25 ) through ( A – 30 ) are primed for ease 
of future reference. 
                The trial solution, equations ( A – 15 ) through ( A – 17 ) are substituted into the 
second circuit equation ( A – 13 ).  There results from the same type of manipulative process a 
system of algebraic equations akin to ( A – 25' ) through ( A – 30' ).  The detailed algebraic 
exposition will be omitted for brevity, and directly show the algebraic system of equations for 
the second circuit equation with the trial solution installed. 
                It can be shown that the resulting system of algebraic equations for the second circuit 
equation is: 
 
 - M C 1 ω 1 2 a 1 + ( 1 – L 2 ( C 2 + C 4 ) ω 1 2 ) a 2 – L 2 C 4 ω 1 2 a 3 = 0                           ( A – 32 ) 
 
 - M C 1 ω 1 2 b 1 + ( 1 – L 2 ( C 2 + C 4 ) ω 1 2 ) b 2 – L 2 C 4 ω 1 2 b 3 = 0                          ( A – 33 ) 
 
 - M C 1 ω 2 2 c 1 + ( 1 – L 2 ( C 2 + C 4 ) ω 2 2 ) c 2 – L 2 C 4 ω 2 2 c 3 = 0                          ( A – 34 ) 
 
 - M C 1 ω 2 2 d 1 + ( 1 – L 2 ( C 2 + C 4 ) ω 2 2 ) d 2 – L 2 C 4 ω 2 2 d 3 = 0                          ( A – 35 ) 
 
 - M C 1 ω 3 2 e 1 + ( 1 – L 2 ( C 2 + C 4 ) ω 3 2 ) e 2 – L 2 C 4 ω 3 2 e 3 = 0                          ( A – 36 ) 
 
 - M C 1 ω 3 2 f 1 + ( 1 – L 2 ( C 2 + C 4 ) ω 3 2 ) f 2 – L 2 C 4 ω 3 2 f 3 = 0                             ( A – 37) 
 
                Equations ( A – 32 ) through ( A – 37 ) are written in a simplified form by letting: 
 
                β i = ( 1 – L 2 ( C 2 + C 4 ) ω i 2 ) / ( L 2 ω i 2 C 4 ), where i = 1, 2, 3  
and, 
                 C * 1 = C 1 / C 4 , and M * = M / L 2             .                                                    ( A – 38 ) 
 
                Using the notation shown in equation ( A – 38 ) write equations ( A – 32 ) through ( A 
– 37 ) in the following manner: 
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                β 1 a 2 = M * C * 1 a 1 + a 3                                                                                ( A – 32' ) 
 
                β 1 b 2 = M * C * 1 b 1 + b 3                                                                               ( A – 33' ) 
 
                β 2 c 2 = M * C * 1 c 1 + c 3                                                                                ( A – 34' ) 
 
                β 2 d 2 = M * C * 1 d 1 + d 3                                                                               ( A – 35' ) 
 
                β 3 e 2 = M * C * 1 e 1 + e 3                                                                                ( A – 36' ) 
 
                β 3 f 2 = M * C * 1 f 1 + f 3                                                                                 ( A – 37' ) 
 
Note the simplified form of equations ( A –32 ) through ( A – 37 ) are primed for future ease of 
reference. 
                Substituting the trial solution into the third circuit equation, equation ( A – 14 ), and 
following the same methods of manipulation and simplification used on the previous equations, 
there results another system of algebraic equations detailed as follows: 
 
                ( 1 – L 3 ( C 3 + C 4 ) ω 1 2 ) a 3 = L 3 C 4 ω 1 2 a 2                                               ( A – 39 ) 
 
                ( 1 – L 3 ( C 3 + C 4 ) ω 1 2 ) b 3 = L 3 C 4 ω 1 2 b 2                                              ( A – 40 ) 
 
                ( 1 – L 3 ( C 3 + C 4 ) ω 2 2 ) c 3 = L 3 C 4 ω 2 2 c 2                                               ( A – 41 ) 
 
                ( 1 – L 3 ( C 3 + C 4 ) ω 2 2 ) d 3 = L 3 C 4 ω 2 2 d 2                                              ( A – 42 ) 
 
                ( 1 – L 3 ( C 3 + C 4 ) ω 3 2 ) e 3 = L 3 C 4 ω 3 2 e 2                                               ( A – 43 ) 
 
                ( 1 – L 3 ( C 3 + C 4 ) ω 3 2 ) f 3 = L 3 C 4 ω 3 2 f 2                                               ( A – 44 ) 
 
                Equations ( A – 39 ) through ( A – 44 ) are shown with the rightmost term non-zero.  
The rightmost term was algebraically moved from the left side of each equation so the following 
notation and method of simplifying the system of equations will be easier seen. 
                Equations ( A – 39 ) through ( A – 44 ) are written in a simplified form by letting: 
 
                γ i = (1 – L 3 ( C 3 + C 4 ) ω i 2 ) / ( L 3 ω i 2 C 4 ), where i = 1, 2, 3     .              ( A – 45 ) 
 
                Using the notation given in equation ( A – 45 ) write equations ( A – 39 ) through ( A – 
44 ) in the following manner: 
 
                γ 1 a 3 = a 2                                                                                                         ( A – 39' ) 
 
                γ 1 b 3 = b 2                                                                                                         ( A – 40' ) 
 
                γ 2 c 3 = c 2                                                                                                         ( A – 41' ) 
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                 γ 2 d 3 = d 2                                                                                                        ( A – 42' ) 
 
                 γ 3 e 3 = e 2                                                                                                        ( A – 43' ) 
 
                 γ 3 f 3 = f 2     .                                                                                                   ( A – 44' ) 
 
Note the simplified form of equations ( A – 39 ) through ( A – 44 ) are primed for ease of future 
reference. 
 
                All the simplified systems of algebraic equations can be assembled into 3 expressions 
that contain all the relationships of equality expressed from equation ( A – 25' ) up to and 
including equation ( A – 44' ).  This can be demonstrated by writing equation ( A – 32' ) as: 
 
                β 1 γ 1 a 3 – M * C * 1 a 1 = a 3, since equation ( A – 39' ) is: γ 1 a 3 = a 2. 
 
The above can be solved for a 1 giving: a 1 = ( β 1 γ 1 – 1 ) a 3 / ( M * C * 1 ).  If the value of a 1 is 
now substituted into equation ( A – 25' ); there will result: 
 
                α 1 ( β 1 γ 1 – 1 ) a 3 / ( M * C * 1 ) = ( C * 2 + 1 ) a 2 + a 3  .  Divide both sides of the 
previous equation by a 3; and recall equation ( A – 39' ) is γ 1 a 3 = a 2.  Then a small amount of 
rearrangement yields: 
 
                α 1 ( β 1 γ 1 – 1 ) / ( M * C * 1) = ( C * 2 + 1 ) γ 1 + 1     .                                    ( A – 46 ) 
 
Equation ( A – 46 ) is true if either a 3 or b 3 ≠ 0       . 
 
                Following the same methods of substitution and manipulation, equations in the same 
format but for subscripted 2 and subscripted 3 variables can be developed.  These equations are: 
 
                α 2 ( β 2 γ 2 – 1) / ( M * C * 1 ) =  ( C * 2 + 1 ) γ 2 + 1 ,                                       ( A – 47 ) 
 
equation ( A – 47 ) being true if either c 3 or d 3 ≠ 0, and, 
 
                α 3 ( β 3 γ 3 – 1 ) / ( M * C * 1 ) = ( C * 2 + 1 ) γ 3 + 1 ,                                       ( A – 48 ) 
 
equation ( A – 48 ) being true if either e 3 or f 3 ≠ 0 . 
 
                Examine the voltage condition equations, ( A – 18 ) through ( A – 20 ), and write the 
system of equations in terms of subscript 3 amplitudes.  Use equations ( A – 38 ) and ( A – 45 ) 
to form σ i = ( β i γ i – 1 ) / ( M * C * 1 ) for i =1, 2 , 3.  Using σ i the subscript 1 amplitudes of 
equation ( A – 18 ) can be written as subscript 3 amplitudes.  Since, a 1 = σ 1 a 3, c 1 = σ 2 c 1, and 
e 1 = σ 3 e 3, equation ( A – 18 ) can be written as: 
 
                σ 1 a 3 + σ 2 c 3 + σ 3 e 3 = V 0                    .                                                       ( A – 18' ) 
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                Use equation ( A – 45' ) through ( A – 43' ) to write equation ( A – 19 ), which is in 
terms of subscript 2 amplitudes, in terms of subscript 3 amplitudes so they can be solved.  Since, 
a 2 = γ 1 a 3, c 2 = γ 2 c 3, and e 2 = γ 3 e 3 then ( A – 19 ) is written as: 
 
                γ 1 a 3 + γ 2 c 3 + γ 3 e 3 = 0        .                                                                         ( A – 19 ) 
 
                Equation ( A – 20 ) of the system is already in terms of subscript 3 amplitudes as: 
 
                     a 3 +      c 3 +     e 3 = 0       .                                                                           ( A – 20 ) 
 
                Cramer’s rule will yield values for the subscript 3 amplitudes for the simultaneous 
system.  The determinant of the voltage system of equations is: 
 
                ∆  = σ 1 ( γ 2 – γ 3 ) + σ 2 ( γ 3 – γ 1 ) + σ 3 ( γ 1 – γ 2 ) = ∆ v / ( M * C * 1 )   .   ( A – 49 )  
 
Continue Cramer’s rule to find the subscripted 3 amplitudes; interchange the columns one by one 
with the column to the right of the equal signs and obtain: ∆ a 3 = V 0 ( γ 2 – γ 3 ), ∆ c 3 = V 0 ( γ 3 
– γ 1 ), and ∆ e 3 = V 0 ( γ 1 – γ 2 ).  Form the well-known quotients to obtain the amplitudes as 
follows: 
 
                a 3 = V 0 M * C * 1 (γ 2 – γ 3 ) / ∆ v,                                                                    ( A – 50 ) 
and, 
 
                c 3 = V 0 M * C * 1 ( γ 3 – γ 1) / ∆ v,                                                                    ( A – 51 ) 
and, 
 
                e 3 = V 0 M * C * 1 ( γ 1 – γ 2 ) / ∆ v      .                                                             ( A – 52 ) 
 
From equations ( A – 50 ), ( A – 51 ), and ( A – 52 ) it can be shown that the subscripted 
amplitudes a 3, c 3, and e 3 are distinct and non-zero.                                                         ( A – 53 ) 
 
                Examine the system of current condition equations, equations ( A – 21 ) through ( A – 
23 ).  They must be written in terms of subscript 3 amplitudes to be solved.  Examine equations ( 
A – 32' ) through ( A – 37' ) and note by using them in combination with equations ( A – 39' ) 
through ( A – 44' ) subscript 1 amplitudes can be replaced with subscript 3 amplitudes.  The role 
of the previously defined parameter σ i in the replacement process is shown through the 
following algebra: 
 
                Recall equation ( A – 33' ); which is:   β 1 b 2 = M * C * 1 b 1 + b 3 ; 
and substitute equation ( A – 40' ), γ 1 b 3 = b 2, for b 2, which yields: 
                { ( β 1 γ 1 – 1 ) / ( M * C * 1 ) } b 3 = b 1      . 
Which shows b 1 is the product of σ 1 and b 3.  Repeating this algebraic process it can be shown 
that all the subscript 1 amplitudes in row 1 of the current system, or equation ( A – 21 ), can be 
replaced with subscript 3 amplitudes using the following expressions: 
 
                σ 1 b 3 = b 1  
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and, 
                σ 2 d 3 = d 1 
and, 
                σ 3 f 3 = f 1      . 
 
                With the above results equation ( A – 21 ) can be written in subscript 3 amplitudes as: 
 
                σ 1 ω 1 b 3 + σ 2 ω 2 d 3 + σ 3 ω 3 f 3 = 0                                                             ( A – 21' ) 
 
                Using the proper choices of equation ( A – 39' ) through ( A – 44' ) all the subscript 2 
amplitudes in the second row of the current system, equation ( A – 22), can be written in 
subscript 3 amplitudes for solution, as follows: 
 
                γ 1 ω 1 b 3 + γ 2 ω 2 d 3 + γ 3 ω 3 f 3 = 0                                                               ( A – 22' ) 
 
                The last row of the electric current system, ( A – 23 ) is written in terms of subscript 3 
amplitudes and requires no manipulation for solution.  Writing ( A – 23 ): 
 
                     ω 1 b 3 +      ω 2 d 3 +      ω 3 f 3 = 0                                                                ( A – 23 ) 
 
                Solve the system of equations, ( A – 21' ), ( A – 22' ) , and ( A –23 ), for ω 1 b 3, ω 2 d 3, 
and ω 3 f 3 using Cramer’s rule, the solution giving the preceeding terms is exactly given by the 
right hand side of equations ( A – 50 ) through ( A – 52 ) with V 0 = 0; that is, 
 
                b 3 = d 3 = f 3 = 0.                                                                                                ( A – 54 ) 
 
                From statement made in ( A – 53 ) that a 3, c 3, and e 3 are not equal to zero, all the 
equations ( A – 46 ), ( A – 47 ) , and ( A – 48 ) hold.  These equations can be written in a 
simplified form in order to write the “frequency equation,” and set ω in the following manner: 
 
                α i ( β i γ i – 1) / ( M * C * 1 ) = ( C * 2 + 1 ) γ i + 1,   where i = 1, 2, 3              ( A – 55 ) 
 
Writing equation ( A – 55 ) in an expanded form in terms of the circuit parameters yields: 
 
 {(1 – L 1 C 1 ω 2 ) / ( M ω 2 C 4 )} {{{ ( 1 – L 2 ( C 2 + C 4 ) ω 2 ) / ( L 2 ω 2 C 4 ) } 
 
{ ( 1 – L 3 ( C 3 + C 4 ) ω 2 ) / ( L 3 ω 2 C 4 ) } } – 1 } / ( ( M / L 2 ) ( C 1 / C 4 ) ) =  
 
{{ ( C 2 / C 4 ) + 1 } { 1 – L 3 ( C 3 + C 4 ) ω 2 } / ( L 3 ω 2 C 4 ) } + 1  ,                              ( A – 56 ) 
 
Clearing fractions and collect like ω terms together in equation ( A – 56 ), which yields: 
 
( 1 – L 1 C 1 ω 2 ) [ ( 1 – L 2 ( C 2 + C 4 ) ω 2 ) ( 1 – L 3 ( C 3 + C 4 ) ω 2 ) – L 2 L 3 C 4 2 ω 4 ) =  
 
M 2 C 1 ( C 2 + C 4 ) ω 4 ( 1 – L 3 ( C 3 + C 4 ) ω 2 ) + L 3 M 2 C 1 C 4 2 ω 6    .                   ( A – 57 ) 
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Collect terms and write the frequency equation in descending powers of ω yields the cubic 
equation ( 2 ) in ω 2 of the earlier section III of this paper as: 
 
                { ( 1 – k 2 ) L 1 L 2 L 3 C 1 [ C 2 C 3 + C 4 ( C 2 + C 3 ) ] } ω 6 –  
 
                { ( 1 – k 2 ) L 1 L 2 C 1 ( C 2 + C 4 ) L 2 L 3 [ C 2 C 3 + C 4 ( C 2 + C 3 ) ] + 
 
                 L 3 L 1 C 1 ( C 3 + C 4 ) } ω 4 + 
 
                [ L 1 C 1 + L 2 ( C 2 + C 4 ) + L 3 ( C 3 + C 4 ) ] ω 2 – 1 = 0    .                                   ( 2 ) 
 
                The three positive roots, ω 1 2, ω 2 2, and ω 3 2 of equation ( 2 ) are the modal or natural 
angular frequencies of the system.  The lower frequency, ω 1 2, is the fundamental natural 
frequency. 
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