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High Voltage Transient Analysis  
�

�

4.1  Surges on Transmission Lines 
 
Due to a variety of reasons, such as a direct stroke of lightning on the line, or by indirect strokes, or by 
switching operations or by faults, high voltage surges are induced on the transmission line.  The surge can be 
shown to travel along the overhead line at approximately the speed of light.  These waves, as they reach the 
end of the line or a junction of transmission lines, are partly reflected and partly transmitted.  These can be 
analysed in the following manner. 
 

Consider a small section of the transmission line, of length dx. 
 

Let the voltage variation across this section at any instant of time be e to dx . 
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vary similarly. 
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Due to the surge, the voltage build-up in the line travels along the line and would cause damage to the 
transformer and other terminal equipment. 
 
Let e  =  instantaneous voltage (varies with both distance and time) 
 i  =  instantaneous current (varies with both distance and time) 
 r  =  resistance of line per unit length 
 l  =  inductance of line per unit length 
 c  =  capacitance of line per unit length 
 g  =  conductance of line per unit length 
 
The voltage drop across PQ and the corresponding current through it are given by 
the following equations. 
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 Figure 4.1 - Element of transmission line 
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Eliminating dx gives us the partial differential equations 

Differentiating equation (1) with respect to x, and equation (2) with respect to t, and eliminating i, we have 

A very similar partial differential equation can be obtained for i. 
�

In practical power lines, the resistance r is much less than the inductance l, and the conductance g is negligible. 
 When these are neglected, the equation reduces to  

It is usual to substitute l.c = 1/a2, where a has the dimension of velocity.  In this case the equation becomes  

The solution to this second order partial differential equation can be written in the form of two arbitrary 
functions. 
 
Consider the function e = f(x - at) .  For this 
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It is thus seen that this function satisfies the partial differential equation. 
 
Similarly, consider the function  e = F(x + at) .  For this 
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This too is seen to satisfy the partial differential equation. 
 
Thus the general solution to the partial differential equation is 
 
 e  =  f(x - at)  +  F(x + at) 
 
where f and F are two arbitrary functions of (x-at) and (x+at).  These two functions can be shown to be 
forward and reverse traveling, as follows. 
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Consider a point x1 at an instant t1 on a transmission line. 

The value of the function f(x-at) at position x1 and time t1 would be 
 
 e1  =  f(x1 - a t1) 
 
At any time t afterwards (i.e. at time t+t1), the value of this same function at the position x would be given by 

 e2  =  f[x - a (t+t1)]  = f(x-at + a t1) 
 
This latter voltage e2 would be equal to e1 at the position  x1 = x - at. 
 
Now  a.t  is the distance traveled by a wave traveling with velocity a in the forward direction in a time t.   
Thus it is seen that the voltage at a distance a.t in the forward direction is always equal to the value at the 
earlier position at the earlier time for any value of time.  Thus the function f(x-at) represents a forward wave. 
 Similarly, it can be seen that the function F(x+at) represents a reverse wave. 
 
The effect of resistance and conductance, which have  been neglected would be so as to modify the shape of 
the wave, and also to cause attenuation.  These are generally quite small, and the wave travels with little 
modification.  In fact this effect can be separately included in the analysis as will be shown later. 
 
4.1.1  Surge Impedance and Velocity of Propagation 
 
Consider the forward wave e  =  f(x-at).  The corresponding current wave i can be determined from equation 
(1) as follows. 

�

Zo is known as the surge (or characteristic) impedance of the transmission line. 
 
The surge current  i  traveling along the line  is  always  accompanied  by  a  surge  voltage   e = Zo i traveling 
in the same direction.  For a reverse wave, it can be similarly shown that the surge current i is associated with 
a surge voltage  e = - Zo i. 
 
For a transmission line, with conductors of radius r and conductor spacing d, it can be shown that the 
inductance per unit length of the line is given by�
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� Figure 4.2 - Position (x1, t1) on transmission line �
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Since the internal flux linkage is small, if this is neglected 

�

The capacitance c per unit length is given by 

Therefore the velocity of propagation of the wave a is equal to the velocity of light.  [Note: If the resistance of 
the line was not neglected, the velocity of propagation of the wave would be found to be slightly less than that 
of light (about 5 to 10%)].   
�

For a cable, the dielectric material has a relative permittivity �r different from unity.  In this case, the above 
derivation would give the velocity of propagation in a cable as 
 
 velocity of propagation = velocity of light/√�r 
 
For commercial cables, �r lies between about 2.5 and 4.0, so that the velocity of propagation in a cable is 
about half to two-third that of light. 
 
The surge impedance of a line can be calculated as follows. 

Substituting the velocity of light as 3 x 108 m/s and simplifying gives 
 
 Zo  =  60 loge (d/r) � 
 
For an overhead line, for practical values of conductor radius r and spacing d, the surge impedance Zo is of the 
order of 300 to 600 ���� 
 
For a cable, the corresponding surge impedance would be given by the expression 
 
 Zo =  60/√�r . loge (d/r) � 
 
which has values in the region of 50 to 60 �� 
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4.1.2  Energy stored in surge 
 
The energy stored in a traveling wave is the sum of the energies stored in the voltage wave and in the current 
wave. 
   Energy = ½ c e2 + ½ l i2 

But for a surge, e = Zo i, so that we have  
 
It is seen that half the energy of the surge is stored in the electrostatic field and half in the electromagnetic 
field. 
 
4.2 Reflection of Traveling waves at a Junction 
 
When a traveling wave on a transmission line reaches a junction with another line, or a termination, then part of 
the incident wave is reflected back, and a part of it is transmitted beyond the junction or termination. 
 
The incident wave, the reflected wave and the transmitted wave are formed in accordance with Kirchhoff's 
laws.  They must also satisfy the differential equation of the line. 

�

Consider a step-voltage wave of magnitude E incident at junction J between two lines of surge impedances Z1 
and Z2.  A portion ET of this surge would be transmitted and a portion ER would be reflected as shown in 
figure 4.3. 
 

There is no discontinuity of potential at the junction J.  Therefore 
 
 E + ER  =  ET 
 

There is also no discontinuity of current at the junction.  Therefore 
 
 I + IR  =  IT 
 
Also, the incident surge voltage E is related to the incident surge current I by the surge impedance of the line 
Z1.  Similarly the transmitted surge voltage ET is related to the transmitted surge current IT by the surge 
impedance of the line Z2 and the reflected surge voltage ER is related to the reflected surge current IR by the 
surge impedance of the line Z1. 
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Figure 4.3 - Reflection at a junction 
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However it is to be noted that the reflected wave is a reverse wave.  Thus we can write 
 

  E  =   Z1 I ,   ET  =  Z2 IT ,  and  ER  =  - Z1 IR 
Substituting these values gives 
 
  E/Z1  - ER/Z1  =  ET/Z2  = (E + ER)/Z2 
 

This gives on simplification 

Similarly, the transmitted surge may be written as 

Thus we have obtained the transmitted wave ET and the reflected wave ER in terms of the incident surge E.  
Since both these surges are a definite fraction of the incident surge, a transmission factor � and a reflection 
factor � are defined as follows. 

When the junction is matched (i.e. Z1 = Z2), then there is no reflection and the reflection factor can be seen to 
be zero. 
 

When the line Z1 is open circuited at the far end (i.e. 
Z2 = ∞), then the full wave is reflected back and the 
reflection factor becomes 1. 
 

When the line Z1 is short circuited at the far end (i.e. 
Z2 = 0), then no voltage can appear and the full wave 
is reflected back negated so as to cancel the incident 
wave and the reflection factor becomes  - 1. 
 
4.2.1 Open circuited line fed from a infinite source 
 
For this case  Z2 = ∞ and �������� 
 

When a voltage surge E  arrives at the junction J, 
which is on open circuit, it is reflected without a 
change in sign (i.e. E). 
 
Also, a current surge (- I) of opposite sign to the 
incident (I) is reflected so that the transmitted current 
is zero. 
 
If the line is fed from a constant voltage source E, 
then as the reflected voltage surge (E) arrives at the 
generator end, since the generator maintains the 
voltage at its end at voltage E, it send a voltage surge 
of -E back to the line so as to keep its voltage at E. 
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Figure 4.4 - Reflections under open circuit conditions 
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[This could also have been deduced by considering that a constant voltage source has a zero internal 
impedance,  and the reflection coefficient can be calculated based on Z2 = 0]. 
 

The voltage surge  - E is accompanied by a current surge - I.  The surge voltage - E as it reaches the open 
junction J, is reflected again without a change in sign, and accompanied by a current + I so as to make the 
transmitted current again zero.  Once these voltage and current waves reach the generator, the instantaneous 
voltage and current will be zero, and the line would once again be uncharged.  The generator now sends a 
voltage surge E accompanied by a current surge I, and the who process described repeats again.  
 
4.2.2  Short Circuit Line fed from an infinite source 
 
For this case  Z2 = 0 and ����- 1. 
 
When a voltage surge E arrives at the junction J, which is 
on short circuit, it is reflected with a change in sign (- E), so 
as to cancel the incoming surge.  Also, a current surge I of 
the same sign as the incident (I) is reflected so that the 
transmitted current is doubled (2I). 
�

If the line is fed from a constant voltage source E, then as 
the reflected voltage surge (- E) arrives at the generator end, 
it send a voltage surge of E back to the line so as to keep 
its voltage at E. 
 
The voltage surge  E is again accompanied by a current 
surge I so that the transmitted current becomes 3I.  The 
surge voltage E as it reaches the junction J, is reflected 
again with a change in sign, and accompanied by a current I 
so as to make the transmitted current again increase by I to 
4I.  At successive reflections, the current keeps on building. 
 [This is to be expected as a short circuited line with zero 
line resistance and zero source resistance, fed from a 
constant voltage source will finally tend to zero.   

However the increase is in a step like manner rather than in a linear manner].  In practice, due to the resistance 
of the line, the current does not keep on building, but each successive current surge is lower than the earlier 
one due to attenuation.  Thus the final current tends to a limiting value determined by the line resistance. 
 
In the above transient, the voltage E has been assumed constant at the generator end.  In practice, such an 
assumption is generally valid, owing to the fact that the very high velocity of propagation does not normally 
cause the system voltage to vary significantly during the period of interest for reflections. 
 
Example: Consider a line 30 km long, operating at a frequency of 50 Hz. 
 
Assuming the velocity of propagation to be 3 x 108m/s, the travel time for single transit of the line would be 30 
x 103/3 x 108 s = 100 ��� 
 
During this time, the change in the phase angle of the 50 Hz voltage would be  ������������������-4 rad  = 10-2 . 
180o = 1.8o. 
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If we consider the peak value of the sinusoidal voltage as 1 pu, then if we deviate from this position by 1.8o, 
then the corresponding voltage would be cos 91.8o = 0.9995 pu.  During this interval, it can be seen that the 
variation of the voltage is negligibly small and the step approximation can be considered valid.  Even in other 
instances, the step analysis is useful because other waveforms can be considered as made up of step surges. 
 
4.3 Bewley Lattice Diagram 
 
This is a convenient diagram devised by Bewley, which shows at a glance the position and direction of motion 
of every incident, reflected, and transmitted wave on the system at every instant of time.  The diagram 
overcomes the difficulty of otherwise keeping track of the multiplicity of successive reflections at the various 
junctions. 
�
Consider a transmission line having a resistance r, an inductance l, a conductance g and a capacitance c, all 
per unit length. 
 
If � is the propagation constant of the transmission line, and 
 E is the magnitude of the voltage surge at the sending end, 
 
then the magnitude and phase of the wave as it reaches any section distance x from the sending end is Ex given 
by. 
 

where 
 e-�	 represents the attenuation in the length of line x 
 e-j�	 represents the phase angle change in the length of line x 
 
Therefore, 
 ����� attenuation constant of the line in neper/km 
 ����� phase angle constant of the line in rad/km. 
 
It is also common for an attenuation factor k to be defined corresponding to the length of a particular line.  i.e. 
 k  =  e-�
 for a line of length l. 
 
The propagation constant of a line �������	
��������

���
���������z and shunt admittance y per unit length is 
given by 
�

Similarly the surge impedance of the line (or characteristic impedance) Zo 
 

When a voltage surge of magnitude unity reaches a junction between two sections with surge impedances Z1 
and Z2, then a part � is transmitted and a part � is reflected back.  In traversing the second line, if the 
attenuation factor is k, then on reaching the termination at the end of the second line its amplitude would be 
reduced to ���� .  The lattice diagram may now be constructed as follows.  Set the ends of the lines at intervals 
equal to the time of transit of each line.  If a suitable time scale is chosen, then the diagonals on the diagram 
show the passage of the waves. 
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In the Bewley lattice diagram, the following properties exist. 

(1) All waves travel downhill, because time always increases. 

(2) The position of any wave at any time can be deduced directly from the diagram. 

(3) The total potential at any point, at any instant of time is the superposition of all the waves which have 
arrived at that point up until that instant of time, displaced in position from each other by intervals 
equal to the difference in their time of arrival. 

(4) The history of the wave is easily traced.  It is possible to find where it came from and just what other 
waves went into its composition. 

(5) Attenuation is included, so that the wave arriving at the far end of a line corresponds to the value 
entering multiplied by the attenuation factor of the line. 

 
4.3.1  Analysis of an open-circuit line fed from ideal source 
 
Let � is the time taken for a wave to travel from one end of the line to the other end of the line (i.e. single 
transit time) and k the corresponding attenuation factor.  

Consider a step voltage wave of amplitude unity starting from the generator end at time t = 0.  Along the line 
the wave is attenuated and a wave of amplitude k reaches the open end at time �.  At the open end, this wave 
is reflected without a loss of magnitude or a change of sign.  The wave is again attenuated and at time �� 
reaches the generator end with amplitude k2.  In order to keep the generator voltage unchanged, the surge is 
reflected with a change of sign (-k2), and after a time 3� reaches the open end being attenuated to -k3.  It is then 
reflected without a change of sign and reaches the generator end with amplitude -k4 and reflected with 
amplitude +k4.  The whole process is now repeated for the wave of amplitude k4. 

�

The corresponding lattice diagram is shown in figure 4.6.  At the receiving end of the line, the transmitted 
surge is twice the incident surge.  [This can be obtained from either the transmission coefficient, or by adding 
the incident and reflected surges which make up the transmitted surge].  At any given instant, the voltage at 
this end is the summation of the surges arriving until that instant of time. 
 
Thus the voltage at the open end after the nth reflection is given by 
 
  Vr  =  2 (k - k3 + k5 - k4 + .... k2n-1) 
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Figure 4.6 - Lattice diagram for an open-circuited line 
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This is a geometric series which has the summation given by 

It is thus seen that when attenuation is present, the receiving end voltage is less than the sending end voltage.  
The reason for this is that there is a voltage drop in the line due to the shunt capacitive currents flowing in the 
line even on open circuit.  However, since k is very close to 1, the reduction is very very small. [For example, 
even for k = 0.90, the corresponding reduced value is 2x0.90/(1+0.902) = 0.9944]. 
�

�

Let us now consider a line terminated through a resistance R.  The corresponding reflection coefficient at the 
receiving end would be �����
-Z1)/(R+Z1) and the reflection factor at the sending end would still be -1.   
Thus in addition to the attenuation occurring on the line, there is a non complete reflection occurring at the far 
end of the line.  This would have a lattice diagram as shown in figure 4.7. 
 
The final voltage attained at the resistive termination will now depend on both the attenuation and the reflection 
coefficient.  From the lattice diagram it can be seen that this value can be calculated as follows. 
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Figure 4.7 - Lattice diagram for a resistive termination 
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Therefore, again, the receiving end voltage is less than the sending end voltage.  However if there is no 
attenuation (k = 1), then the receiving end voltage tends to unity as shown in figure 4.8. 

4.2.3  Reflections at 3 substation system 
 
Consider 3 substations (1), (2) and (3) connected by lines Z1, Z2, Z3 and Z4, as shown in figure 4.9.  Let ������

������ ���� �
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��	��������	��������������������orresponding reflection factors. 
 
In the Bewley lattice diagram, the junctions must be laid off at intervals equal to the time of transit of each 
section between junctions.  (If all lines are overhead lines, then the velocity of propagation may be assumed to 
be the same and the junctions can be laid off proportional to the distance between them.  Otherwise this is not 
possible). 
 
The lattice diagram is shown together with the system diagram, and a unity magnitude surge is assumed to 
arrive from outside the on line 1. 
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Figure 4.8 - Receiving end voltage with resistive termination 
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Example: 
 
3 substations A, B and C are spaced 75 km apart as shown in figure 4.10.  B and C are connected together by 
a cable (velocity of propagation 2 x 108 m/s), and the remaining connections are all overhead lines (velocity of 
propagation 3 x 108 m/s).  The attenuation factors and the surge impedances of the lines are shown alongside 
the lines.  The overhead lines beyond A and C on either side are extremely long and reflections need not be 
considered from their far ends.  Determine using the Bewley lattice diagram the overvoltages at the 3 
substations, at an instant 1_ ms after a voltage surge of magnitude unity and duration ¾ reaches the substation 
A from the outside.  
 
The transmission and reflection coefficients can be calculated as follows. 
 
At A, 

 
similarly, at B 

reflection coeff.      �1<->�1                 �2<->�2          �3<->�3  
 
transmission coeff.    
1<->
1

'                
2<->
2

'         
3<->
3

' 
 
attenuation factor      ����         k2        ����     k3      ���� 
                   ������1 ���������������������2 ���������������3 ���������� 
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         Z2        	��
     Z3      	��
   Z4 
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������� Figure 4.9 - Bewley Lattice Diagram 
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similarly, at C it can be shown that 
 
 �3 = 0.8,    �3' = - 0.8,    �3 = 1.8,  and  �3' = 0.2. 
 
The single transit times of the two lines connecting the substations are 
 
 �AB = 75 x 103/3 x 108 = ¼ ms,   �BC = 75 x 103/2 x 108 = _ ms . 
�

�

The lattice diagram must be set out, such that the intervals AB and BC are in the proportions to the times 1/4 
ms and 3/8 ms respectively.  These are shown in figure 4.10  . 
 
Since the step voltage incident at substation A is of duration 3/4 ms, only reflections that have occurred after 
3/4 ms prior to the present will be in existence. 

at time t = 1_ ms, 
 
voltage at junction A = - 0.080 + 0.143 -0.010  = 0.053 pu 
voltage at junction B = 0.199 + 0.004 + 0.032 + 0  = 0.235 pu 
 
Since a surge arrives at junction C at the instant of interest, we can define values either just before or just after 
the time. 
 
voltage at junction C at t- = 0.040 + 0.127 = 0.167 pu 
voltage at junction C at t+ = 0.040 + 0.127 + 0.005 = 0.172 pu 
�
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Figure 4.10 - Example of application of Bewley Lattice diagram 
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���� Reflection and Transmission at a T-junction 

 
When the intersection occurs between more than two lines, the analysis can be done as follows.  Consider the 
connection shown in figure 4.11. 

 

If a surge voltage of magnitude E is incident on the junction with two other lines (Z2 and Z3) from a line (Z1), 
 then the transmitted and reflected surges would be as shown.  For these 

 E = Z1 I,  Er = - Z1 Ir,  E2 = Z2 I2 , and  E3 = Z3 I3 

Also, considering the fact that the total voltage and the current on either side of the junction must be the same, 

 E2 = E3 = ET = Er + E,   and   Ir + I = I2 + I3 

These may be solved to give the following expressions for the transmitted and reflected surges. 
 

The method can be extended to junctions with more than 3 lines.  However, there is an easier method of 
analysis to obtain the same result. 
 

For a surge, the voltage and the current are always related by the surge impedance, independent of the 
termination of the line at the far end.  Thus for analysis purposes, the line behaves similar to a load of 
impedance Z0 connected between the start of the line and the earth.  Thus when a single line (Z1) feeds two 
other lines (Z2 and Z3), the resultant reflections and transmissions could be obtained by considering both these 
lines as impedances connected from the junction to earth.  That is, these two lines behave for surge purposes 
as if their surges impedances were connected in parallel. 

                                       ����������������� 
               incident wave           transmitted wave 
               ���������������         E2            I2 
               E           I      ������������������������� 
                     Z1           �           Z2            
            �����������������������                         
               Er          Ir     �         Z3              
              ����������������    	������������������� 
               reflected wave       E3            I3  
                                    ����������������� 
                                    transmitted wave 

Figure 4.11 - Reflections and transmissions at T-junction 
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Figure 4.12 - Equivalent 2-branch connection 
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This gives the transmitted surge as 
 

 
which is basically the same expression as was obtained earlier.  Extension of the latter method to a multiline 
junction is very much easier, as in this case only the parallel equivalent of a larger number of lines needs to be 
obtained.  No new derivations are required. 
 
Example: 
 
An overhead line A with a surge impedance 450 ��
�����������������
�������
�	
��������
�����	
���� B and C  
�
��� ��
��� 
������������������� ���������������	��D��
����� � ��
��� 
��������� ���������� ����  ����
���J.  A 
traveling wave of vertical front of magnitude 25 kV and very long tail travels on A towards the junction J.  
Calculate the magnitude of the voltage and current waves which are transmitted and reflected when the surge 
reaches the junction J.  Attenuation in the lines can be neglected. 
 
For an incident surge from A, lines B, C and D are effectively in parallel. 
 
The parallel equivalent impedance is ZT = 600 �!!�����!!�������"��� 
 
 ET = 2 x 50 x 25  / (450 + 50)  =  5 kV 
 
 Er = (50 - 450) x 25 / (450 + 50)  = - 20 kV 
 
 I = 25x 103/450 = 55.56 A,  Ir = -(- 20 x 103)/450 = 44.44 A, 
 
 IB = 5 x 103/600 = 8.33 A, IC = 5 x 103/600 = 8.33 A,  ID = 5 x 103/60 = 83.33 A 
 
 
4.5 Bergeron's Method of Graphical Solution 
 
The lattice diagram method of solution is not easily applied when the load impedance is a non-linear device.  
In such cases, the graphical method of Bergeron is suitable.  This is also based on the partial differential 
equations 

which has the traveling wave solution 
 
  v = f(x-at) + F(x+at)   where a is the wave velocity 
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The corresponding current can be obtained as follows. 

As was learnt earlier, f(x-at) = constant represents a forward traveling wave, and F(x+at) = constant 
represents a backward traveling wave. 
 
From the expressions derived above, it can be seen that v + Z0 i = constant represents a forward wave and v 
- Z0 i = constant represents a backward wave.  In either case the value of the constant is determined from the 
history of the wave up to that time. 
 
The Bergeron's method is applied on a voltage-current diagram, and is illustrated by means of an example. 
 
Example 
 
A transmission line, surge impedance Z0 is fed from a constant voltage supply E at one end and by a non-linear 
resistor whose V-I characteristic is known at the other end.  Determine the waveform of the voltage at the load 
end when the initially open line is closed at end A at time zero. 
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Figure 5.13 - Bergeron's method of solution 
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The method of constructing the diagram is as follows.  The VI characteristic of the source (constant at E), and�
that of the load (non-linear) are drawn on the V-I diagram.  If t = 0 is defined as the instant at which the surge 
initially reaches the load, then this surge leaves A at time t = -�.  This original surge must satisfy two 
conditions.  Firstly, since it is leaving A, it must be a point on the source characteristic A-1.  Secondly, this is a 
forward surge.  Thus it must be of the form  v + Z0 i = constant, or a line with slope -Z0. 
 
Thus this surge is a line with slope -Z0 leaving A-1.  This surge arrives at B at time 0. 
At this instant, it must also be a point on the load characteristic as well as on the surge line.  Thus it must be 
the point B0.  At B the surge is reflected back.  This reflected surge must start from B0, and also have a slope 
+Z0 corresponding to v - Z0 i = constant.  The surge reaches A1 at time �.  The process continues.  From the 
diagram, we can determine the voltage at A at time -�, �, 3�, 5� etc, and the voltage at B at time 0, 2�, 4�, 6� 
etc.  The voltage waveforms at both A and B are easily obtained by projecting the values as shown on the 
diagram on to the right hand side.  Similarly, the current waveforms can be obtained by projecting the values 
below. 
�

���� Representation of Lumped Elements in travelling wave techniques 
 

In the Lattice diagram technique, basically only transmission lines can be represented.  Since the surge 
impedance of transmission lines are purely resistive, resistances can also be represented with surge impedance 
equal to the resistance value, and no travel time. 
 

Inductances and capacitances could be represented, by considering them as very short lines or stub lines.  This 
is done by assuming that an inductance has a distributed capacitance of negligible value to earth, and that shunt 
capacitances have a negligible series inductance.  These assumptions will make the lumped elements stub 
lines with negligible transmission times.  It is usual to select the transmission times corresponding to the 
minimum time increment ��� 
 

For the lumped inductance connected in series�

 
If the travel time of the line is selected corresponding to  ������ 

Thus a lumped inductance may be represented by a stub line of transit time �� and surge impedance ����. 
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Figure 4.14 - Representation of Inductance 
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For the lumped capacitance connected in shunt 

�

�

Thus a lumped capacitance may be represented by a stub line of transit time �� and surge impedance ����. 
 

Another method of analyzing in the presence of inductances and capacitances is to use the numerical form as 
indicated below. 
 

 

 

4.7 Branch Time Table for digital computer implementation 
 

The Bewley Lattice diagram cannot be implemented directly on the digital computer.  When implemented on 
the computer, a physical diagram is not required to keep track of the travelling waves.  The branch time table 
serves the purpose of the diagram, and keeps track of the voltage of each node, and the reflected and 
transmitted waves. 
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Figure 4.15 - Representation of Capacitance 
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4.8 Transform Methods of solving Transients 
 
Simple transient problems may be solved using the Laplace Transform.  However, since its inverse transform 
is not evaluated for complicated transforms, the Fourier transform is preferred.  Further, for digital computer 
application, what is used is the numerical form of the transform, which is obtained by approximating the 
integrals to summations. 

This is used with the transfer function H(�) of a network to give the transform of the response. 
 

 
 R(�) = H(�) . F(�) 
 
The response in the time domain is then obtained by inverse transformation. 

With the  approximations  introduced, the period of observation T and the maximum frequency � are limited to 
finite values. 
 
The transmission line is usually represented by the frequency dependant two-port admittance parameters, for 
the determination of the transfer function. 

where 
 A  = Y0 coth �l 
 B  = Y0 cosech �l 
 Y0 = surge impedance matrix 
 �  = propagation matrix 
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Figure 4.16 - Block diagram of system 
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