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In order to achieve the best performance from a Tesla Coil, a setup procedure that goes under the name of tuning must be performed. The purpose of this paper is to make some light on the theory behind a successful tuning, underlying the much more profitable operational points. Whereas there surely are a number of practical issues involved, the scope herein has been deliberately limited to providing justifications from a mathematical and theoretical standpoint.

After presenting the behavior of two air-coupled resonant circuits, the conditions to achieve the maximum voltage gains are stated and different procedures to accomplish them are explored. Finally, the conditions to reach a complete energy transfer between primary and secondary are discussed, with an emphasis on their effectiveness.

1 Air-coupled resonant circuits

Operation of the Thor Tesla Coil can be regarded as that of two inductively air-coupled, damped resonant circuits (Figure 1): the primary circuit is formed when the spark gap conducts and connects in series the primary capacitor C1, the primary winding L1 and its equivalent resistance R1. The secondary circuit is formed by the series of the secondary winding L2 with its equivalent resistance R2 and with the top toroid C2: the loop is closed through ground, as the secondary coil base is grounded and the top toroid exhibits a lumped capacity in respect to ground too. The primary and secondary coils are inductively coupled with each other with mutual inductance M.
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Figure 1:
Inductively coupled primary and secondary circuits in a TC.

According to the first Kirchoff law, the sum of the voltages around a closed circuit is zero, therefore [Ter43, Smy50]:
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If qi is the instantaneous charge on the capacitors C1 and C2, for each circuit is
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Substituting in Equation 2-1 and 2-2
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Rearranging and introducing the operator D as the differential operator with respect to time t
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The above equations yield the following auxiliary equation (or characteristic equation) [Hof75]
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where:
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k is the coupling coefficient (0<k<1), while ω1 and ω2 are, respectively, the angular resonance frequencies of the uncoupled primary and secondary circuits (also called open-circuit resonances).

Equation 2-8 is a fourth-order linear homogeneous differential equation that has got four complex roots Di, i=1..4: if these roots are distinct then the four functions
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constitute a basis of the space of solutions for the system formed by Equation 2-6 and Equation 2-7. The general solution of this system is therefore
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The constants Ai and Bi can be evaluated using the initial conditions at t=0
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where q0 is the initial charge on the primary capacitor. The primary and secondary capacitor voltages are simply
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Solutions in a closed form for v1 and v2 can be found only for the ideal case of no damping (R1=R2=0): the roots Di of Equation 2-8 have only imaginary parts and the secondary voltage [Cra54] can be expressed as [Phu91]
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where:


[image: image19.wmf]1

1

2

2

2

2

2

1

C

L

C

L

T

=

=

w

w


(2-18)


[image: image20.wmf](

)

(

)

(

)

(

)

(

)

(

)

2

2

2

2

2

2

2

2

2

1

1

2

4

1

1

1

2

4

1

1

k

T

k

T

T

w

k

T

k

T

T

w

-

+

-

+

+

=

-

+

-

-

+

=

w

w


(2-19)

T is the tuning ratio, defined as the square of the ratio of the uncoupled resonance frequencies, while V1 is the initial voltage across C1. w1 and w2 are the resonance frequencies of the primary and secondary circuits when coupled: the physical constraints on the values of k and T ensure that w1 and w2 are always real. w2>w1 is also assumed.

Equation 2-17 is important and shows that the secondary voltage is a high frequency oscillation (w2+w1)/2 which is amplitude modulated by another low frequency oscillation (w2-w1)/2.

2 Conditions for maximum voltage gain

From Equation 2-17 in the previous section it can be seen that the voltage v2(t) at the secondary capacitor C2 can be greater than the original voltage on C1 at time zero. This is the basic principle used by the Tesla Coil to generate high voltages at its secondary. 

An obvious way to optimize a TC design is to set it for developing the maximum achievable secondary voltage. The maximum voltage gain (from Equation 2-17) is
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where:
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Gain G from Equation 3-1 can be achieved only if both the sine terms in Equation 2-17 are equal to ±1 simultaneously, i.e. only if
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where n and m are positive or negative integers. Without losing generality, n can be set to zero, therefore changing the constraint to
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Substituting Equation 2-19 into Equation 3-4
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where:
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k can now be eliminated from Equation 3-1 giving [Phu91]
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The above result has been previously investigated [Ree88,Phu91] striving for maximizing the G/GL ratio and pointing out that a value higher than 1 can be obtained for tuning ratios different than unity. Figure 2 shows that this ratio has its maximum for T<1, depending on the value chosen for m: for instance, if m=1 then the maximum value achievable for G/GL is 1.18 when T=0.541 and k=0.546 [Phu91]. 
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Figure 2:
G/GL gain vs. tuning ratio T for different m values [Phu91].

This analysis is correct and results in a maximized v2(t) peak value supposing that the values of GL (i.e. L1 and L2) and of V1 remains constant. As the tuning ratio T (Equation 2-18) can be varied operating on C1, C2, L1 or L2, it is of practical interest to examine each of these cases separately in terms of the overall voltage gain achieved at the secondary. From Equation 2-17 and Equation 3-7
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where:
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It has to be noted that choosing a value for m, calculating α from Equation 3-6, picking a value for T and calculating k using Equation 3-5, condition 3-4 is ensured and the sine terms product is maximum (±1).

2.1 Optimizing on L1 or L2
From Equation 3-2 and Equation 2-18
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Optimizing on L1 or L2, C1 and C2 are constant and, from the equation above
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As also V1 is constant, from Equation 3-8 and Equation 3-11
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This means that when varying T by changing L1 or L2, the original graph family from Figure 2 has to be corrected by a factor 
[image: image34.wmf]T

. Therefore, the variable K1 can be defined as
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From Figure 3 it can be easily seen that the maximum V2 value is now reached with T=1, regardless of the value of m (anyway, m has to be an integer as seen before). In practice, on a real Tesla Coil the secondary winding cannot be easily modified but the primary tap can be moved with no problem. At the light of the above considerations, when tuning moving the primary coil tap the best performance can be achieved with a tuning ratio T=1.
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Figure 3:
K1 gain vs. tuning ratio T for different m values.

2.2 Optimizing on C1
When evaluating the benefits of optimizations involving the change of C1, it is mandatory to use the same amount of energy E0 to accumulate the initial charge q0 on it. Recalling that V1 is the initial voltage across C1
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 From Equation 3-8 and Equation 3-14, eliminating V1 
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Substituting Equation 2-18 in the previous equation and eliminating C1
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(3-16)

As L1, L2, C2 and E0 are constant, V2 is now proportional to K2 defined as
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This means that the same results obtained in the previous section for K1 (Figure 3) can be applied also in this case. Therefore, when tuning by changing the primary capacitor value, the best performance can be achieved with a tuning ratio T=1.

2.3 Optimizing on C2
Equation 3-8 is influenced by the value of C2 only in its GT term: therefore, the results presented in Figure 2 [Phu91] apply without any correction when the Tesla Coil optimization is performed by varying the top terminal capacity.

All in all, the best improvement (in terms of secondary voltage) from the typical condition of T=1 can be achieved by decreasing C2 in order to have T=0.541 (see Table 1). While the gain improvement is only 18%, the coupling coefficient value required is k=0.546, which imposes severe engineering problems to avoid dielectric breakdown between the primary and secondary windings, and makes the practical utility of this result highly questionable.

m
1
2
3
4
5
10

T
0.541
0.766
0.863
0.912
0.939
0.982

k
0.546
0.364
0.271
0.215
0.178
0.095

GT
1.18
1.073
1.039
1.024
1.016
1.005

Table 1:
Maximum gain as a function of tuning ratio and coupling coefficient [Phu91].

3 Conditions for complete energy transfer

A slightly different approach is to define a TC optimal functional mode as one where all of the charge initially present on C1 gets eventually transferred to C2, possibly in the shortest amount of time.

Intuitively, a complete transfer of the energy present on C1 to C2 implies the developed voltage V2 to be maximum [Fin66]. As seen in Section 3, this requires Equation 3-3 to be satisfied: this equation can be rearranged as
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It can be shown [Fin66] that a further condition required for the whole charge present on C1 to move to C2 is
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That is, the tuning ratio value must be T = 1. Substituting Equation 4-2 in the characteristic equation 2-8 the following roots can be easily found
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Using the conditions expressed by Equation 4-1 and Equation 4-3, the value(s) of k needed to ensure complete energy transfer can be found as
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that is
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where
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Summarizing, a tuning ratio T = 1 and a value of k as given by Equation 4-5 are sufficient to ensure both a maximum voltage at the secondary and a complete energy transfer from the primary. The choice of a and c (and therefore of k) affects only the position of the time instant when the transfer will be completed.

a
c
k
Notch
Cycles
a
c
k
Notch
Cycles

1
2
0.600
1
1.0
1
4
0.882
2
2.0

2
3
0.385
1
1.5
2
5
0.724
2
2.5

3
4
0.280
1
2.0
4
7
0.508
2
3.5

4
5
0.220
1
2.5
5
8
0.438
2
4.0

5
6
0.180
1
3.0
7
10
0.342
2
5.0

6
7
0.153
1
3.5
8
11
0.308
2
5.5

7
8
0.133
1
4.0
10
13
0.257
2
6.5

8
9
0.117
1
4.5
11
14
0.237
2
7.0

9
10
0.105
1
5.0
13
16
0.205
2
8.0

10
11
0.095
1
5.5
14
17
0.192
2
8.5

11
12
0.087
1
6.0
16
19
0.170
2
9.5

12
13
0.080
1
6.5
17
20
0.161
2
10.0

13
14
0.074
1
7.0
19
22
0.146
2
11.0

14
15
0.069
1
7.5
20
23
0.139
2
11.5

Table 2:
Some of the values of k that ensure complete energy transfer when T=1 [Deq02].

In Table 2 are listed some of the values of k obtained from Equation 4-5: the notch reported is the one that contains the total transfer instant, while the cycle number refers to the number of primary oscillation cycles (primary current) after what the transfer is complete. Note how this number of cycles is simply c/2, while the notch number is given by b (Equation 4-6).

At the time instant when all the initial charge has been transferred from the primary to the secondary is (see Figure 4)
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Figure 4:
Total energy transfer after 10 primary cycles (see cursor) with k=0.161, in correspondence of the second notch.

Under the condition T = 1, Equation 2-17 gives
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Supposing lossless circuits and T = 1, varying k does not influence the maximum value of v2 achievable, only the time instant when it will be reached. It is therefore interesting to investigate the amount of energy left in the primary when not using the k values that ensure total transfer.

The following analysis is deliberately limited to 0.2 < k < 0.6 as this is the range usually employed on real Tesla Coils. As the energy stored in C2 is proportional to the square of the voltage upon it, the function f(k,t) defined as
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gives a direct measurement of the percentage of the total energy in C2. Figure 5 shows the maximum value assumed by f(k,t) within its first notch, for different values of k: also the time instant when this value was reached is reported. It can be easily noted that for coupling coefficient values lower than 0.43, the energy left on C1 is always less than a mere 4%: the same applies for 0.53 < k < 0.6. The worst performance is achieved for 0.43 < k < 0.53, with a maximum of 13% of energy left on C1.
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Figure 5:
Energy transferred and transfer time vs. coupling coefficient.

In a real TC, the resonant circuits are lossy and it is crucial to reach the maximum voltage at the secondary in the shortest time, to minimize losses. On the other hand, the coupling coefficient cannot be raised at will without causing dielectric breakdown on the secondary winding or between secondary and primary. In order to achieve the optimal performance, a viable strategy might then be:

· tune the primary coil to achieve T = 1

· increase k as much as possible

· avoid k values between 0.43 and 0.53

· do not care about catching k values optimal in term of total energy transfer

4 References

[Cra54]
Craggs, J. D., Meek, J. M.: High Voltage Laboratory Technique. Butterworth Scientific Publications, London, 1989.

[Deq00]
de Queiroz, A. C. M.: Synthesis of multiple resonance networks. 2000 IEEE ISCAS, Geneva, Switzerland, pp. 413-416, Vol. V, May 2000.

[Deq01]
de Queiroz, A. C. M.: Designing a Tesla magnifier. Manuscript available at  http://www.coe.ufrj.br/~acmq/tesla/magnifier.html. Accessed 03/07/2001.

[Deq02]
de Queiroz, A. C. M.: Email correspondence on the Tesla mailng list on 9 – 12.12.2000.

[Fin66]
Finkelstein, D., Goldberg, P. & al.: High Voltage Impulse System. Review of Scientific Instruments, pp. 159 – 162, vol. 37, no. 2, 1966.

[Phu91]
Phung, B.T.,Blackburn, T.R. & al.: Tesla Transformer Design and Application in Insulator Testing. Seventh International Symposium on High Voltage Engineering, p. 133 – 36, vol. 5, 1991.

[Ree88]
Reed, J. L.: Greater voltage gain for Tesla-transformer accelerators. . Review of Scientific Instruments, pp. 2300 – 2301, vol. 59, no. 10, October 1988.

[Smy50]
Smythe, W. R.: Static and dynamic electricity. McGraw-Hill, 1950.

[Ter43]
Terman, F. E.: Radio Engineers’ Handbook. McGraw-Hill, 1943.

_1043581024.unknown

_1043659787.unknown

_1043826585.unknown

_1045655567.unknown

_1045657631.unknown

_1045984353.unknown

_1045984581.unknown

_1045987295.unknown

_1045657653.unknown

_1045656237.unknown

_1045656615.unknown

_1045655840.unknown

_1043826955.unknown

_1043827042.unknown

_1043826738.unknown

_1043661395.unknown

_1043662976.unknown

_1043663124.unknown

_1043661466.unknown

_1043660951.unknown

_1043661146.unknown

_1043659824.unknown

_1043646076.unknown

_1043651318.unknown

_1043659524.unknown

_1043651069.unknown

_1043645571.unknown

_1043645807.unknown

_1043583799.unknown

_1043219905.unknown

_1043221036.unknown

_1043221070.unknown

_1043580674.unknown

_1043221053.unknown

_1043220650.unknown

_1043220840.unknown

_1043220896.unknown

_1043219987.unknown

_1043218022.unknown

_1043218404.unknown

_1043219398.unknown

_1043218290.unknown

_1043217137.unknown

_1043217321.unknown

_1043064695.unknown

_1043064754.unknown

_1043058956.unknown

