
ScanTesla
A program to scan Tesla coil parameters to find the best

output.

Terry Fritz May 22, 2005

ScanTesla is a program that iterates through and tests a large number of
Tesla coil parameters in search of those parameters that give the best output
sparks.

The program normally is intended for the new DRSSTC type of Tesla coil, but
minor changes to the inputs will allow typical disruptive coils to be studied too.

The Tesla coil is assumed to match the following model:

This is a standard Tesla coil model with a DRSSTC style input. Various
equations are given which define how the circuit elements are applied in the
program. Cl and Rl are the typical 1pF/foot +220k Ohm streamer load
elements (these may improve over time). In the case of a conventional coil,
the input is set to zero and node1 is set to the initial Cp voltage. With a very
long T1 time, CW coils could be directly modeled as well.

The program inputs are as follows:

Cp start, stop, and increment
Rp start, stop, and increment
Lp start, stop, and increment
Ls start, stop, and increment
K start, stop, and increment
Rs start, stop, and increment
Ct start, stop, and increment
Cl start, stop, and increment
Rl start, stop, and increment
T1 start, stop, and increment
Vin DRSSTC square wave voltage
Vn1 initial condition on Cp for disruptive coil case.

The program will scan the values as defined above. Normally, most of the
variables will be fixed and only a few actually scanned.

The program outputs are as follows:

WRl Power per T1 to load Rl
WRp Power per T1 to Rp
WRs Power per T1 to Rs
Win Power per T1 to coil (WRl+WRp+WRs)
ICp-peak Peak Cp current
VCp-peak Peak Cp voltage
VCt-peak Peak Ct voltage

Antonio tells us ("ScanTesla program -> Optimization", May 19, 2005):

Formulate a set of state equations with the form:
dX/dt = [A]X(t)+B*vin(t)
where X is a vector with 5 elements
(Vc1,Vc2,Vc2,Il1,Il2), [A] is a
5x5 real matrix, and B is a vector with 5 elements. This
is quite easy.
Solve it by numerical integration with the trapezoidal
rule:
X(t0+dt)=X(t0)+(dt/2)*([A]*X(t0)+B*vin(t0)+[A]*X(t0+dt)+B
*vin(t0+dt))
where t0 is the present time, dt is a small time interval
ahead, X(t0)
is the present state, and X(t0+dt) is the next state.
The required calculation is:
X(t0+dt)=[[I]-(dt/2)*[A]]^(-
1)*(dt/2)*([A]*X(t0)+B*(vin(t0)+vin(t0+dt)))
The matrix inversion has to be done just once.
This results in good precision if you put about 50 "dt"
for each cycle.

Formulate a set of state equations with the form:
dX/dt = [A]X(t)+B*vin(t)

We setup the equation with a(x,y) and b(x) being unknown for now:

dVCp/dt a11 a12 a13 a14 a15 VCp(t) b1
dVCt/dt a21 a22 a23 a24 a25 VCt(t) b2
dVCl/dt = a31 a32 a33 a34 a35 x VCl(t) + b3 x Vin(t)
dIp/dt a41 a42 a43 a44 a45 Ip(t) b4
dIs/dt a51 a52 a53 a54 a55 Is(t) b5

The matrix X is:

VCp
VCt
VCl
Ip
Is

From the model:

dVCp/dt = 1/Cp x Ip
dVCt/dt = 1/Ct x (Is - (VCt - VCl) / Rl))
dVCL/dt = 1/Cl x (VCt - VCl) / Rl
dIp/dt = 1/Lp x (Vin - VCp - Ip x Rp - K x Is)
dIs/dt = 1/Ls x (-VCt - Is x Rs - K x Ip)

Thus, the matrix A is:

0 0 0 1/Cp 0
0 1/(CtxRl) -1/(CtxRl) 0 1/Ct
0 1/(ClxRl) -1/(ClxRl) 0 0
-1/Lp 0 0 -Rp/Lp -K/Lp
0 -1/Ls 0 -K/Ls -Rs/Ls

The matrix B is:

0
0
0
1/lp
0

The required calculation is:
X(t0+dt)=[[I]-(dt/2)*[A]]^(-
1)*(dt/2)*([A]*X(t0)+B*(Vin(t0)+Vin(t0+dt)))

The program will be written in C with LCC (http://www.cs.virginia.edu/~lcc-
win32/). The following rules will apply:

1. It will be very easy to modify and recompile so anyone can add
improvements or special functions over time as they wish and as the art
improves.

2. No special libraries or complex programming will be used to keep it simple,
understandable, and versatile.

3. The program should be general enough to be compiled with just about any
C compiler under any operating system.

4. To keep it simple and easy, No GUI is supported. Input and output is
typically done through direct input/output or data files to be analyzed with say
spreadsheet programs.

5. The will be no copyright, GPL, copyleft, trademarks, or real owner for the
Public Domain base version. Anyone can copy, steal, plagiarize, change, or
use it as they wish. People may want to sell, copyright or do whatever with
improved versions (say with an added GUI) but that is their problem, not ours.

