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ABSTRACT

Analytic expressions are presented for the conversion of electromagnetically driven trapped upper hybrid oscillations and
electromagnetic Z mode at a density irregularity in a magnetized plasma, which are valid for arbitrary low resonances of
the trapped field. The theory predicts non-Lorentzian skewed shapes of the resonances for the Z mode radiation.

INTRODUCTION

One of the most important effects of electromagnetic pumping of the ionosphere from the ground is the structuring into
filamentary plasma irregularities stretched along the geomagnetic field. These striations are central to a number of phe-
nomena, including anomalous absorption [1], stimulated electromagnetic emissions [2], Langmuir turbulence evolution
[3], and field-aligned scattering of radio waves [4]. Striations are mainly density depletions of a few percent formed by
upper hybrid (UH) oscillations that are trapped in the depletion where they are generated by linear conversion of the pump
field on the density gradients [5, 6]. However, the short wave UH oscillations are partially transmitted through the trapping
depletion into the long wave electromagnetic Z mode [7, 8]. This Z mode leakage constitutes a large part of the damping
that determines the UH amplitude [9]. Also, Z mode leakage appears to have been observed by a sounding rocket in the
auroral ionosphere [10, 11] where UH oscillations were excited by electron beams.

Here new analytic expressions are presented for the Z mode amplitude in terms of the eigenfunctions for the trapped UH
oscillations. The governing equations are solved in slab geometry by using a scale length separation technique similar
to the source approximation first introduced to obtain analytic expressions for mode conversion in unmagnetized plasma
[12]. In view of the significance of UH trapping and the strong excitation of the lowest resonances of the trapped field,
as shown in numerical studies [13], it is important that our results are derived for arbitrary low resonances, in contrast to
previous WKB approximations [7, 8]. This is relevant for the description of the stationary state of striations [5, 6], which
include complex nonlinear phenomena of the trapped UH oscillations [14, 13, 15]. Further, our results pave the ground
for modeling the interaction of striations, which is fundamental to understand the global plasma structuring in response
to electromagnetic pumping as well as the nonlinear mode conversion of the O mode pump wave. Measurements [16]
and theories [5, 6] show that striations are isolated filaments, thus constituting a strongly inhomogeneous distribution of
plasma turbulence. However, the considerable Z mode leakage suggests that many striations must interact and be excited
together, so that the effective leakage is reduced due to the Z mode influx from surrounding striations [17].

BASIC EQUATIONS

We consider the time harmonic linear wave equation for high frequency waves, i.e., only for electron dynamics,

∇2E−∇(∇ ·E) + k2
0 D/ε0 = 0 , (1)

wherek0 ≡ ω/c (ε0 is the permittivity of vacuum andc is the vacuum light speed). The time dependence of the electric
field E and displacementD is∝ exp(−i ω t) whereω is the pump frequency. The relation betweenD andE has to take
into account corrections forβ ≡ vT/c > 0 (vT is the electron thermal speed) in order to describe UH waves, as well as for
small deviations in the background plasma densityn0(r) = n0[1 + η(r)] where|η| � 1. A useful model of the dielectric
response can be derived from the fluid equations

D/ε0 = κ′E + γ (β/k0)2 σ/σ‖∇(∇ ·E) , (2)

whereσ‖ ≡ i ε0 ωX, X ≡ (ωp/ω)2 (ωp is the electron plasma frequency),γ = 3 is the appropriate adiabatic index,
κ′ = κ+ δκ, δκ = −X η σ/σ‖, andσ andκ are the cold conductivity and relative permittivity tensor, respectively. The
first term in the right-hand side of (2) describes the dielectric response of a cold plasma with a small plasma density
variation and the second term is a correction due toβ > 0.

We consider only variations ofη in one direction perpendicular to the static ambient magnetic fieldB0 = B0 ẑ so that
η = η(x). The total electric field isE = E0 + E1 whereE0 is the O mode pump field andE1 is the excited field.E1



varies in the same direction asη, i.e., E1 = E1(x). The amplitude of the pump wave, which is assumed to propagate
parallel toB0, will decrease alongB0 due to energy transfer to the Z mode and also vary perpendicular toB0 due to
the density irregularity. However, we consider the pump wave to be a constant oscillating fieldE0 = EO êO where the
polarization vector iŝeO = (x̂− i ŷ)/

√
2. By writing (1) and (2) in rectangular coordinates one finds that the equation for

Ez is not coupled toEx orEy. Ez describes O mode waves propagating perpendicular toB0 and will not be considered
further. TheEx andEy components are coupled and describe the X and Z mode. The equations are

(k−2
0 Λ d2/dx2 + κ′)E1 = −δκE0 , where Λ ≡ β̃2

(
1 0
i Y β̃−2

)
, (3)

β̃2 ≡ γ β2/(1− Y 2), andY ≡ ωc/ω (ωc is the electron gyro frequency). In order to decouple (3) outside the irregularity
we expressE1 in field coordinates corresponding to the wave modes in the homogeneous plasma outside the irregularity.
We introduce the normalized polarization vectorsêX andêZ corresponding to the X and Z mode polarization, respectively,
as basis vectors. The polarization vectors are, except for a phase factor, determined byκ êI = N2

I Λ êI for I ∈ {X,Z}
where the refractive indicesNX andNZ are roots of the biquadratic equation|κ − N2 Λ| = 0. For X > 1 − Y 2

N2
X ≈ N2

UH whereN2
UH ≡ (1−Y 2−X)/(γ β2) is the refractive index for an UH wave in the electrostatic approximation

andN2
Z ≈ 1−X(1−X)/(1−Y 2−X) is the refractive index for a Z mode wave in the cold plasma approximation. We

takeE1 = EX êX + EZ êZ whereEX andEZ is the amplitude of the X and Z mode, respectively. In this representation
of E1 equations (3) are transformed to

LXEX −QXZη EZ = QXOη EO (4)

LZEZ +QZXη EX = −QZOη EO (5)

which explicitly shows the two modes to be coupled only due toη 6= 0. The operators areLX ≡ −k−2
X d2/dx2 − (1 +

QXXη) andLZ ≡ k−2
Z d2/dx2+1+QZZη wherekI ≡ k0NI . The coupling constants areQIJ = δIJ−N−2

I ê†I P Λ−1êJ
The matrixP ≡ (2 · 12 − êXê

†
X − êZê

†
Z)/(1 − |ê†XêZ|2) has the propertieŝe†I P êJ = δIJ and is introduced because

êX andêZ are not mutually orthogonal (12 is the2 × 2 unity matrix). The boundary conditions correspond to outward
propagating Z mode and vanishing X mode at infinity, i.e.,EX → 0 andEZ ∝ exp(i kZ |x|) as|x| → ∞.

ANALYSIS

The wave equations (4) and (5) and the boundary conditions can be written as two coupled integral equations. Multiplying
(4) and (5) by an appropriate Green’s function and integrating gives

E(X
Z)(x) = (±)Q(XZ

ZX)

∫ ∞
−∞

G(X
Z)(x, x1)η(x1)E(Z

X)(x1) dx1 + E
(0)

(X
Z) (6)

The system of coupled integral equations (6) can be written as two uncoupled Fredholm integral equations of the second
kind, which are

E(X
Z)(x)−

∫ ∞
−∞

K(X
Z)(x, x1)E(X

Z)(x1)dx1 = E
(0)

(X
Z) + E

(1)

(X
Z) (7)

where the kernelsKX andKZ are

K(X
Z)(x, x1) = −QXZQZX

∫ ∞
−∞

G(X
Z)(x, x2)G(Z

X)(x2, x1) η(x1) η(x2) dx2 . (8)

The Green’s functionsGX andGZ satisfy the uncoupled equationsLXGX(x, x1) = δ(x − x1) andLZGZ(x, x1) =
δ(x − x1). The boundary conditions areGX(x, x1) → 0 andGZ(x, x1) ∝ exp(i kZ |x|) as|x| → ∞. The source terms
E

(0)
X , E(0)

Z , E(1)
X , andE(1)

Z in (7) are given by

E
(0)

(X
Z)(x) = (±)Q(XO

ZO)

∫ ∞
−∞

G(X
Z)(x, x1) η(x1)EO dx1 (9)

E
(1)

(X
Z)(x) = (±)Q(XZ

ZX)

∫ ∞
−∞

G(X
Z)(x, x1) η(x1)E(0)

(Z
X)(x1) dx1 . (10)

One can interpretE(0)
I as the zeroth order Born approximation of (6) which describes direct excitation of X and Z mode

waves by scattering the pump wave off the density irregularity. Similar to the interpretation ofE
(0)
Z as direct excitation,



E
(1)
Z can be interpreted as excitation of Z mode waves in a two step process. First X mode waves are excited as described

byE(0)
X which is followed by thatE(0)

X is scattered off the irregularity to excite Z mode waves. Contrary to the equations
(3) together with the boundary conditions, the equations (7) are uncoupled and well suited for approximations.

In what follows, the treatment is restricted to the case with one isolated density irregularity. The isolated density depletion
has a characteristic widthL⊥ perpendicular toB0 and is centered aroundx = ξ. No further assumptions aboutη are
necessary and all formal calculations can be made without assuming any specific shape of the irregularity. AsGZ changes
on length scalesLZ ≡ k−1

Z andη is essentially only different from zero for|x−ξ| < L⊥ one can approximate the integral∫∞
−∞ f(x2)GZ(x1, x2) η(x2) dx2 ≈ GZ(x1, ξ)

∫∞
−∞ f(x2) η(x2) dx2 for any functionf(x), assumingL⊥ � LZ. With

this approximation and the definition (9) ofE(0)
X the kernelKX in (8) is

KX(x, x1) ≈ −QXZQZX

QXO
GZ(x1, ξ) η(x1)E(0)

X (x)/EO . (11)

Notice thatKX can approximatively be written as a product of one function ofx and one ofx1, which thus constitutes a
degenerate kernel approximation. With the degenerate kernel (11) it is trivial to solve (7). Particularly, far away from the
irregularity (|x− ξ| � L⊥)

EZ/EO ≈ −
(
QZO η̂ +QZX

∫ ∞
−∞

η E
(0)
X /EO dx1

) (
1 +

QXZQZX

QXO
GZ(ξ, ξ)

∫ ∞
−∞

η E
(0)
X /EO dx1

)−1

GZ(x, ξ) .

(12)
Similarly, by using the length scale separationGZ(x, ξ) can be approximated

GZ(x, ξ) ≈ i kZ/2
1 + iQZZ kZ η̂/2

exp(i kZ |x− ξ|) (13)

whereη̂ ≡
∫∞
−∞ η dx1. The solution (12) do not involveGX explicitly. EZ can instead be constructed directly fromE(0)

X .
By using the equation forGX and (9) one finds

(LUH + ∆)E(0)
X = QXO/QXX η EO (14)

whereLUH ≡ λ2d2/dx2 − η, λ2 ≡ −k−2
X Q−1

XX ≈ γ λ2
DX (λD is the Debye length), and∆ ≡ −Q−1

XX ≈ 1 − Y 2 −X.
The solution to (14) can be written as a superposition of eigenfunctions toLUH. If the contribution from the continuous
spectrum is neglected the solution is [13]

E
(0)
X /EO ≈

QXO

QXX

M∑
n=0

ηn ψn(x)
∆−∆n

(15)

whereηn =
∫∞
−∞ η ψ∗n dx1. The normalized eigenfunctionsψn and eigenvalues∆n (min η < ∆0 < ∆1 < · · · < ∆M <

0) are determined by the equation(LUH + ∆n)ψn = 0 and the boundary conditionsψn → 0 as|x| → ∞. EZ can be
expressed in terms ofηn and∆n by combining (12) and (15), for|x− ξ| � L⊥

EZ/EO ≈ −

(
iQZO kZ η̂/2

1 + iQZZ kZ η̂/2
− i QXO

QXZ

M∑
n=0

νn/2
∆−∆n

) (
1− i

M∑
n=0

νn/2
∆−∆n

)−1

exp(i kZ|x− ξ|) (16)

whereνn ≡ −(kZ |ηn|2QXZQZX/QXX)(1 + iQZZ kZ η̂/2)−1 . The real part ofνn can be interpreted as the width of the
resonance at∆n and the imaginary part as a shift of the resonance frequency.

RESULTS AND CONCLUSIONS

In order to demonstrate the use of the solution (16) we considerη(x) = −η̃ sech2(x/L⊥) whereη̃ > 0 characterizes the
depletion amplitude andψn are given in terms of the hypergeometric function. Figure 1 shows|EZ/EO|2 as a function of
∆. As (16) indicates,|EZ/EO| is particularly large near the resonances∆n and the resonances are not purely Lorentzian.
Instead they are increasingly skewer for increasing resonance number, which is due to interference of Z mode leakage
from non-resonant UH modes. The width and skewness of the resonances can be used for experimental verification of Z
mode leakage from trapped UH oscillations. Figure 1 also shows the WKB approximation [7, 8] of the same quantity. The
WKB solution, which was derived in an approximation that excludes the lowest resonances, reproduces nevertheless the
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Figure 1: |EZ/EO|2 as a function of∆ from (16) (solid line) and from the WKB approximation (dashed line). The
WKB solution was calculated using a slightly improved density correction compared to Ref. [7, 8]. The parameters are
β = 1.5 · 10−3, L⊥ = 1.0 m, η̃ = 3.5%, ωp/2π = 6 MHz, andωp/ωc =4.5.

position of the resonances, but not the width of the lowest resonance and the skewness. The skewness is not described by
the WKB solution since the interaction between the UH and Z mode is assumed to be confined to the electrostatic cutoffs
where the inner UH and the outer Z mode solutions are matched.
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