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ABSTRACT

Analytic expressions are presented for the conversion of electromagnetically driven trapped upper hybrid oscillations and
electromagnetic Z mode at a density irregularity in a magnetized plasma, which are valid for arbitrary low resonances of
the trapped field. The theory predicts non-Lorentzian skewed shapes of the resonances for the Z mode radiation.

INTRODUCTION

One of the most important effects of electromagnetic pumping of the ionosphere from the ground is the structuring into
filamentary plasma irregularities stretched along the geomagnetic field. These striations are central to a number of phe-
nomena, including anomalous absorption [1], stimulated electromagnetic emissions [2], Langmuir turbulence evolution
[3], and field-aligned scattering of radio waves [4]. Striations are mainly density depletions of a few percent formed by
upper hybrid (UH) oscillations that are trapped in the depletion where they are generated by linear conversion of the pump
field on the density gradients [5, 6]. However, the short wave UH oscillations are partially transmitted through the trapping
depletion into the long wave electromagnetic Z mode [7, 8]. This Z mode leakage constitutes a large part of the damping
that determines the UH amplitude [9]. Also, Z mode leakage appears to have been observed by a sounding rocket in the
auroral ionosphere [10, 11] where UH oscillations were excited by electron beams.

Here new analytic expressions are presented for the Z mode amplitude in terms of the eigenfunctions for the trapped UH
oscillations. The governing equations are solved in slab geometry by using a scale length separation technique similar
to the source approximation first introduced to obtain analytic expressions for mode conversion in unmagnetized plasma
[12]. In view of the significance of UH trapping and the strong excitation of the lowest resonances of the trapped field,
as shown in numerical studies [13], it is important that our results are derived for arbitrary low resonances, in contrast to
previous WKB approximations [7, 8]. This is relevant for the description of the stationary state of striations [5, 6], which
include complex nonlinear phenomena of the trapped UH oscillations [14, 13, 15]. Further, our results pave the ground
for modeling the interaction of striations, which is fundamental to understand the global plasma structuring in response
to electromagnetic pumping as well as the nonlinear mode conversion of the O mode pump wave. Measurements [16]
and theories [5, 6] show that striations are isolated filaments, thus constituting a strongly inhomogeneous distribution of
plasma turbulence. However, the considerable Z mode leakage suggests that many striations must interact and be excited
together, so that the effective leakage is reduced due to the Z mode influx from surrounding striations [17].

BASIC EQUATIONS
We consider the time harmonic linear wave equation for high frequency waves, i.e., only for electron dynamics,

V?E-V(V-E)+kiD/e =0, 1)

whereky = w/c (ep is the permittivity of vacuum and is the vacuum light speed). The time dependence of the electric
field E and displacemerD is « exp(—iw t) wherew is the pump frequency. The relation betwdarandE has to take

into account corrections fgt = vr/c > 0 (vt is the electron thermal speed) in order to describe UH waves, as well as for
small deviations in the background plasma densitit) = no[1 + n(r)] where|n| < 1. A useful model of the dielectric
response can be derived from the fluid equations

D/eo = r'E+7(8/ko)? 0/ V(V-E), )

whereo = icw X, X = (wp/w)? (wp is the electron plasma frequency),= 3 is the appropriate adiabatic index,

k' =k + 0k, 0k = =X no /o), ando andx are the cold conductivity and relative permittivity tensor, respectively. The
first term in the right-hand side of (2) describes the dielectric response of a cold plasma with a small plasma density
variation and the second term is a correction dué e 0.

We consider only variations of in one direction perpendicular to the static ambient magnetic Bgld= Bj 2 so that
n = n(x). The total electric field iE = Ey + E; whereE, is the O mode pump field arlfl; is the excited field E;



varies in the same direction gsi.e., E; = E;(z). The amplitude of the pump wave, which is assumed to propagate
parallel toBg, will decrease alon@, due to energy transfer to the Z mode and also vary perpendicuBy tue to

the density irregularity. However, we consider the pump wave to be a constant oscillatingfield£o éo where the
polarization vector igo = (& —i4)/v/2. By writing (1) and (2) in rectangular coordinates one finds that the equation for
E. is not coupled ta&,, or E,. E, describes O mode waves propagating perpendiculBptand will not be considered
further. TheE, and £, components are coupled and describe the X and Z mode. The equations are

(kg2 Ad?/da® + K')E, = —6kEy, where A= 52(i; 392) : 3)

52 =~62/(1-Y?),andy = we/w (wc is the electron gyro frequency). In order to decouple (3) outside the irregularity
we expresd; in field coordinates corresponding to the wave modes in the homogeneous plasma outside the irregularity.
We introduce the normalized polarization vectégsandé,, corresponding to the X and Z mode polarization, respectively,

as basis vectors. The polarization vectors are, except for a phase factor, determingédbyN? A é; for I € {X,Z}

where the refractive indiced’x and V; are roots of the biquadratic equatiom — N> A| = 0. ForX > 1 — Y?

NE ~ NZ,; whereNg; = (1-Y?2—X) /(v 8?) is the refractive index for an UH wave in the electrostatic approximation
andNZ ~1— X(1—X)/(1-Y?— X) is the refractive index for a Z mode wave in the cold plasma approximation. We
takeE; = Fx éx + FEyz éz whereEx and Ey is the amplitude of the X and Z mode, respectively. In this representation

of E; equations (3) are transformed to

Lx BEx — Qxznkz = @Qxonko 4)
Lz E7 +QzxnEx = —QzonFEo 5)

which explicitly shows the two modes to be coupled only dug té 0. The operators aréx = —k;f d?/dx? — (1 +
Qxxn)andLy = k:Z‘2 d?/dx?®+1+Qzznwherek; = ko N;. The coupling constants a€g;; = 65 —N;Q é} PA ey

The matrixP = (2 - 1, — éxék — ézé})/(1 — |él.éz|?) has the propertiea! P é; = d;; and is introduced because
éx andéz are not mutually orthogonal { is the2 x 2 unity matrix). The boundary conditions correspond to outward
propagating Z mode and vanishing X mode at infinity, if&x, — 0 and Ez « exp(i kz |z|) as|z| — oc.

ANALYSIS

The wave equations (4) and (5) and the boundary conditions can be written as two coupled integral equations. Multiplying
(4) and (5) by an appropriate Green'’s function and integrating gives

Z

E(x) (.L) = (i) Q(Pzi)z() /O; G()é) (x,xl)n(xl) E()Z() (1-1) dxq + EE?Z‘)) (6)

The system of coupled integral equations (6) can be written as two uncoupled Fredholm integral equations of the second
kind, which are

- _ 5O L g
Bx)(e) - /_Oo K 5y (@ 20) By (a)dan = B + B(x) (7
where the kernel&x and K, are
K(syovon) = ~QxaQax | Ggy(aa) gy ) o) s ®

The Green'’s functiong’x and Gy, satisfy the uncoupled equatioiscGx(x,z1) = 6(x — x1) and LGy (z, x1) =
d(z — x1). The boundary conditions af@x (z,x1) — 0 andGz(z, z1) x exp(i kz |z|) as|z| — oo. The source terms
EL,EQ EL, andEY in (7) are given by

EE%))(JU) = (F)Qp9 /_oo Gy (@, 1) n(z1) Eo day 9)
EE%))(I) = (F)Qpz /700 G@)(I,Il)ﬁ(ﬁ)Eé%(m)dm- (10)

One can interpreE}O) as the zeroth order Born approximation of (6) which describes direct excitation of X and Z mode
waves by scattering the pump wave off the density irregularity. Similar to the interpretatlﬁ%?)odis direct excitation,



Eél) can be interpreted as excitation of Z mode waves in a two step process. First X mode waves are excited as described

by E§<O) which is followed by thaIEg)) is scattered off the irregularity to excite Z mode waves. Contrary to the equations
(3) together with the boundary conditions, the equations (7) are uncoupled and well suited for approximations.

In what follows, the treatment is restricted to the case with one isolated density irregularity. The isolated density depletion
has a characteristic width, perpendicular td, and is centered around = £. No further assumptions abogtare
necessary and all formal calculations can be made without assuming any specific shape of the irregu@yith@dmsges

on length scaleg, = kz_l andn is essentially only different from zero for — £| < L, one can approximate the integral

fff)o f(x2) Gz(z1,m2) n(x2) doe ~ Gy(11,E f f(x2) n(x2) dzs for any functionf(z), assumingl.; < Lz. With

this approximation and the definition (9) E&O) the kernelKx in (8) is

Qxz Qzx
Qxo

Notice thatKx can approximatively be written as a product of one functiom ahd one ofr;, which thus constitutes a
degenerate kernel approximation. With the degenerate kernel (11) it is trivial to solve (7). Particularly, far away from the
irregularity (x — &| > L)

Kx(z,21) ~ — Gy(x1,8) n(z1) B (2)/Eo . (11)

BafBo~~ (Qui+Qus [ nBC/Bodn) (14 L2292 Gyl6.0) [ nB/Bodn ) Galw).
— 00 — 00 (12)
Similarly, by using the length scale separat®@p(z, £) can be approximated
kg /2 .
Goylz,6) ~ ikz/ exp(ikz |z — €]) (13)

14+iQuzkz /2

wherer) = ffcoo n dxy. The solution (12) do not involv&'x explicitly. E can instead be constructed directly frcﬂ‘ﬁ)).
By using the equation fatZx and (9) one finds

(Lun + A) = @Rxo0/QxxnEo (14)

whereLyn = \2d?/da® — n, A2 = —ky? Qxx = v A3 X (\p is the Debye length), and = —Qxx ~ 1 — Y2 — X.
The solution to (14) can be written as a superposition of eigenfunctiofigto If the contribution from the continuous
spectrum is neglected the solution is [13]

E(O)/E on Z M wn (15)

wheren,, = ffooc Ny dxi. The normalized eigenfunctions, and eigenvalued,, (minn < Ag < A; < -+ <Ay <
0) are determined by the equatiédyu + A,,)¥, = 0 and the boundary conditions, — 0 as|z| — oco. Ez can be
expressed in terms af, andA,, by combining (12) and (15), fde: — &| > L,

. M M -1
iQzo kz1/2 - Qxo0 Vn /2 , Un /2 ,
Eyz/Eo ~ — — 1-— kz|x — 16
z/Bo <1+inzkzﬁ/2 Zsz nzoA_A" anoA—An exp(i kzlw —¢&[) (16)

wherev,, = —(kz |nn]? Qxz Qzx/Qxx)(1 +iQzz kz1/2)~! . The real part of,, can be interpreted as the width of the
resonance ah,, and the imaginary part as a shift of the resonance frequency.

RESULTS AND CONCLUSIONS

In order to demonstrate the use of the solution (16) we consideér= —7sech?(z/L, ) wheres} > 0 characterizes the
depletion amplitude and,, are given in terms of the hypergeometric function. Figure 1 sHéuygEo|? as a function of

A. As (16) indicates|Ey / Eo | is particularly large near the resonandes and the resonances are not purely Lorentzian.
Instead they are increasingly skewer for increasing resonance number, which is due to interference of Z mode leakage
from non-resonant UH modes. The width and skewness of the resonances can be used for experimental verification of Z
mode leakage from trapped UH oscillations. Figure 1 also shows the WKB approximation [7, 8] of the same quantity. The
WAKB solution, which was derived in an approximation that excludes the lowest resonances, reproduces nevertheless the
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Figure 1: |Ez/Eo|* as a function ofA from (16) (solid line) and from the WKB approximation (dashed line). The
WKB solution was calculated using a slightly improved density correction compared to Ref. [7, 8]. The parameters are
B=15-10"% L =1.0m,7 = 3.5%, w, /27 = 6 MHz, andw,, /w. =4.5.

position of the resonances, but not the width of the lowest resonance and the skewness. The skewness is not described by
the WKB solution since the interaction between the UH and Z mode is assumed to be confined to the electrostatic cutoffs
where the inner UH and the outer Z mode solutions are matched.
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