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1. INTRODUCTION

The Tesla secondary supports a pattern of electrical resonances in which energy
is exchanged cyclically between the magnetic field and the electric field of the coil.
In general the behaviour of solenoids at very high frequency is complicated to
analyse, requiring some sophisticated mathematics to apply Maxwell’s equations
in the presence of a helical conductor. Fortunately we do not need to tackle this
in order to gain considerable insight into the operation of a solenoid as a Tesla
secondary, which exploits only the lowest frequency modes in which the electric
field lies along the axis of the coil. The free space wavelengths of these axial
resonances are very large compared to the physical dimensions of a typical secondary
coil, and this enables some valuable approximations to be applied. We can ignore
direct coupling between the two fields and instead consider them to be coupled
only through the induced movement of charges along the winding. Also we do not
need to consider retarded potentials and thus we are able to describe the behaviour
of the secondary in terms of inductances and capacitances coupling currents and
voltages along the coil. This very much simplifies the analysis since we can reduce
the coil description to a network of infinitesimal mutual reactances and proceed to
form equations describing the coil by applying Kirchhoff’s laws in a straightforward
way. This approach was first set out in 1921 by Breit [2] and we follow very much
the same lines. To begin our analysis we must first define the physical capacitances
and inductances involved, which is the subject of the next two sections.

2. PHYSICAL CAPACITANCE

Figure 2.1 shows a sample of electric flux paths emanating from an arbitrary
point on the surface of a coil situated above a finite ground plane. Each of these flux
paths represents a component, of the field which we can replace with an equivalent
capacitance, the size of which represents the ratio between the potential difference
across the two ends of the flux path and the flux connecting the two points. To do
this we must regard each point on the coil as an arbitrarily small area, so that the
sample capacitances shown in the figure are infinitesimal.
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F1cURE 2.1. Types of capacitance around the coil

The capacitance Cyrouna represents flux passing between the point on the coil
and the ground plane. If we declare the ground plane to be perfectly conducting,
and if we ignore its self inductance, then the ground plane is at a uniform potential
and Cyround can be considered the total capacitance from the sample point to the
entire ground plane.

Different parts of the coil are at different potentials since they are connected by
a conductor situated in a varying magnetic field. We must therefore introduce a
capacitance Cinternal t0 represent flux passing between points on the coil. For each
sample point such as the one shown, there is an infinite set of values for Ciniernal
corresponding to the capacitance between the sample point as source and each of
the infinite number of destination points on the coil. Since there are also an infinity
of sample points we can see that Cjpnternas takes the form of a scalar function of two
position variables.

A capacitance such as Cy4y exists between the sample point on the coil and
objects in the vicinity. In general, such objects are at potentials determined by the
ratio of Cyqy to the capacitance C,, of the object to the ground plane. Since these
objects are similarly coupled to all other points on the coil, they can place a par-
asitic contribution in parallel with Ci,erner- However, for simplicity, we’ll assume
that either C), is much larger than Cq; or that all such objects are conductively
grounded. Either way, this allows capacitances such as Cyqy to be regarded as be-
ing in parallel with Cground, and any parasitic contributions to Cinternar via Cwau
will be shunted away.

Each sample point on the coil has a capacitance to infinity, represented by
Cinfinity- The displacement current return path for this capacitance is via the
self capacitance to infinity of the ground plane itself, Cy. This latter is usually very
much larger (in the case of the earth, several hundred pF') than Cjnfinity, so that,
just as with Cyen we can also consider Cinfinity to be in parallel with Cyrouna-
Note that we do not expect the field represented by Cin finity to ever reach infinity.
It is defined by considering the work done in bringing to the point a test charge
from a reference potential of zero at infinity. It represents the charge supporting
the far field of the coil and must be budgeted for in any resonator which is not
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FIGURE 2.2. Typical external capacitance distribution of a Tesla
secondary above a ground plane

completely contained. We are only entitled to describe it by a capacitance because
of the long wavelength approximation accepted in the introduction [3].

We can summarise the physical capacitances of the resonator as just described,
in terms of two scalar functions. For each infinitesimal section of the coil, with
position z and length dz, the external capacitance is a scalar function of x and is
defined as the parallel combination of Cyround, Cwaii, and Cinfinity, such that the
total capacitance between the sample section and the ground plane is

(2.1) Coezt(z) dx

By this definition C,.:(x) is the external capacitance per unit length at the point
z. Figure 2.2 shows the typical bathtub shape of Cepi(x) for a coil without a top-
load. The external capacitance rises steeply at the base of the coil, due to the close
proximity of the end of the coil to the ground plane. A smaller rise occurs at the
top due to the open end of the coil. When a top-load is fitted, this top-end rise in
Cert disappears due to the shielding effect of the top-load.

The internal capacitance can be described by a scalar function Cj,¢, this time
taking two position variables, defined so that the capacitance between an infinites-
imal coil segment of length dx at position x and another section of length dy at
position y is

(2.2) Cint(z,y) dz dy

In accordance with the definition of capacitance, the function Cj,; is symmetric,
ie Cine(z,y) = Cint(y,x) and the diagonal values Cji(x,x), which are undefined,
are not used [7]. Some sample slices through the internal capacitance function
are shown in figure 2.3 Notice how the internal capacitance has a higher overall
value when the end-most regions of the coil are involved. We’ll see later that
Cint, by coupling together remote regions of the coil has some interesting and
significant effects on the operation of the secondary. The capacitance between
neighbouring turns (which can be quite large) is also part of Cj,; but we’ll see
that this contributes very little to the effective capacitance of the Tesla secondary,
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F1GURE 2.3. Typical internal capacitance distribution
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FI1GURE 2.4. Typical toroid capacitance distribution

although it becomes the dominant capacitance at frequencies very much higher
than the operating frequency of the Tesla coil.

If a top-load is present, an additional scalar function is required in order to
describe the capacitance between each sample point on the coil and the top-load.
This is defined in a similar way to the others, so that the capacitance between the
toroid and an infinitesimal coil section at position z of length dz is

(2.3) Cior(z) dz

Figure 2.4 shows the typical distribution of Ci,,(z). In addition to this distributed
capacitance to the coil, the toroid will also have its own capacitance direct to the
ground plane, which we’ll represent by a single lumped capacitance Cy,p.

The functions which we have now introduced - Cezt, Cint, Cior, and the top-
load capacitance Ciop, together provide a complete description of the electric field
coupling of the coil. The picture of the resonator capacitance in terms of these
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functions is shown in figure 2.5. A sample point at position z is illustrated. Note
that = can be taken to be either a distance along the coil, or a count of turns,
or perhaps some other convenient measure. Another point y is shown in order to
illustrate a specimen of Cj,:(x,y) and both these points should be thought of as
having an infinitesimal size dz and dy respectively.

It may from time to time be desirable to represent other electrodes in the res-
onator, for example strike rings and primary coupling coils. If an additional elec-
trode is conductively grounded, or can be considered so by virtue of having a large
capacitance to ground, then its effect can be included in the C¢,; function. If the
electrode is floating, or held at a fixed RF potential with respect to the resonator,
then it may be necessary to introduce an additional physical capacitance to describe
its effect, either as a distributed function or a lumped total capacitance, much as
we did for the top-load capacitance. This would be the case for example with a
primary winding.

The physical capacitance functions can be determined numerically to arbitrary
precision from the geometry of the coil and its surroundings by the solution of the
Laplace equation or by a boundary element method [4]. In each case the physical
capacitance distribution functions are obtained as matrices rather than continuous
functions and the variable x is then a discrete position index and the infinitesimal
length dx becomes a small but finite element size.

3. PHYSICAL INDUCTANCE

An infinitesimal portion of the coil at position x experiences an induced EMF
proportional to its length dz. The magnitude of this EMF can be described in terms
of the sum of an infinity of contributions from all the others points on the coil, each
acting as a source current. The magnitude of each contribution is described by a
mutual induction coefficient which we introduce as a scalar function of two position
variables. The EMF induced across a section of length dx at position z due to a
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FI1GURE 3.1. Typical mutual inductance distribution

current I(y) in a length of coil dy at position y is, [?]

OI(y,t
(3.1) M (z,y) dz dy %
Following from the definition of mutual inductance, the function M (z,y) is sym-

metric, ie
(32) M(z,y) = M(y, =)

and the self inductance of the infinitesimal elements are described by the diagonal
terms M (z,z). Figure 3.1 shows the relative mutual inductance along several slices
through a typical mutual inductance profile function. The mutual inductance be-
tween turns separated by most of the length of the coil is about 1% of that which
exists between neighbouring turns. It can be seen from this graph that the mutual
inductance profile for any given turn is much the same as any other, and in fact for
coils of uniform radius the function M (z,y) can be replaced by one which takes a
single argument,

(3-3) M(z,y) - M'(jz —yl)

but we will continue to use the more general M (z,y). A similar mutual inductance
function can be employed to describe the distributed coupling of a primary winding.
In this case the primary is usually operated well below its lowest self-resonant
frequency which allows us to treat its winding as a lumped inductor. We can for
example define a function Mp(z) such that
(3.4) M, (z)dz Al (1)

dt
is the EMF induced into the infinitesimal element of the secondary at x due to the
primary current I,(t).

In practice, various sources of parasitic inductive coupling are potentially present,
the two main ones being the formation of eddy current loops in the ground plane and
in the top-load. The effect of these loops is to reduce the apparent self inductance of
the solenoid and to reduce the Q factor. The magnitude of these effects is difficult
to calculate and fortunately in most Tesla secondaries the modification of the self
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inductance due to coupling with eddy current loops is of order 1% or less and we can
safely ignore it, which means that the functions M (z,y) and My(z) are sufficient
to describe the magnetic behaviour of the coil.

When dealing with Tesla secondaries, the conductor size is small compared with
the overall dimensions, which means that for computational purposes, M (z,y) can
be obtained with good accuracy from the coil geometry by calculating the mutual
inductance between pairs of circular current filaments. It is also found that treating
the primary conductor in terms of current filaments achieves reasonable accuracy
despite the relatively larger conductor normally used [6].

4. THE COUPLING EQUATIONS

The previous two sections have defined the physical reactances of the resonator
in terms of a number of scalar functions of position which, when taken together,
completely describe the fields and their coupling in terms of the relationship between
voltages and currents in infinitesimal regions of the coil. We’ll now look in some
detail at how the coupling takes place by examining the currents and voltages
acting on a representative sample element of the coil. In order to concentrate on
the reactances and coupling, we will not consider the mechanisms by which energy
is dissipated in the resonator - the low loss typical of Tesla secondaries does not
qualitatively affect any of the following loss-free analysis.

Figure 4.1 shows a sample element of the conductor at an arbitrary position x
along the coil, and having an infinitesimal length dz. The current entering from
the base of the coil is I(z,t) and the current leaving towards the top of the coil is
I(x + dz,t). Similarly for the potentials at each end of the element, which differ by
an amount dV (z,t) due to the induced EMF along the element. The first thing we’ll
do is consider the total charge @) stored on the surface of this element. Conservation
of charge requires that the net conduction current entering this element matches
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the rate of increase of @, ie

d
(4.1) d—? = I(z,t) — I(z + dz, t)
The charge @ is responsible for maintaining the element at its potential V' (x,t) and
Q is the sum of the charges associated with each of the infinitesimal capacitances
shown in the figure. The charge necessary to set the potential V(x,t) across the

external capacitance Cey¢(z) dzx is

(4.2) Qext = Cegr dz V() 1)

The internal capacitance, which is represented in figure 4.1 by a specimen contri-
bution from another element of length dy at position y requires a charge

(4.3) Cint(z,y) dz dy (V(z,t) — V(y,1))

to maintain the potential across the specimen shown, and the total charge required
at = to maintain the potential distribution across the entire internal capacitance is
then the integral of this expression over all possible positions y along the length of
the coil, ie

h
(44) Qi =da [ Conl4)(V(2,8) = V(3 8) dy
0
The two charges together account for the total charge on our element, ie
(4'5) Q = Qext + Qint

It’s convenient to treat the rate of change of charge dQ/dt as a displacement current
into the capacitance, since this allows Kirchhoff’s laws to be applied. The external
capacitance shunts a displacement current Is(z,t) to ground, given by

dQez 0
(4.6) I(z,t) = ?# t = eat(2) 5 V() do
and the corresponding definition for the total displacement current I.(z,t) into the

internal capacitance is

_dQine 0 "
(4.7) L(z,t) = = dz | Cin(z,y)(V(2,t) = V(y,t)) dy
dt at  Jo
In terms of these two displacement currents, the rate of change of charge is
d
(4.8) d_ct) = I;(z,t) + I.(z,1)
and the charge conservation equation 4.1 then becomes
(4.9) Ii(z,t) + I.(z,t) + [(x + dz,t) — I(x,t) =0

which is just a statement of Kirchhoff’s current law for the element.

Meanwhile, the EMF induced across this element due to current flow I(y,t) in
another element at position y is given by equation 3.1 and the total EMF induced in
our sample element is the integral of this expression over all source current positions
y along the coil. Given the direction established in the figure 4.1 for current flow
through the element, the induced EMF will point in the opposite direction to the
current flow, and so the differential increase in voltage on going from z to = + dz
will be

h
(4.10) dv(z,t) = —% dz /0 M(z,y)I(y,t)dy
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The two equations 4.9 and 4.10 are quite general and are the fundamental differen-
tial equations which must be satisfied by the currents and voltages at every point
on the coil at frequencies low enough for the long wavelength approximations to
apply.

So far the time dependency has been shown explicitly but we will now simplify
things by noting that since the equations are linear we can continue the analysis
by looking only at solutions that have a sinusoidal variation with time, on the
understanding that any arbitrary solution can be formed from the superposition
of sinusoidal solutions of appropriate frequencies and phases. To do this we can
replace the voltage V (z,t) by a representative sinusoid v/2V,, () e/** in which V,, is
the phasor magnitude of the w component, and is barred as a reminder that it is a
complex phasor quantity. We will continue with this convention so that there is no
confusion when we use the unbarred symbols later for peak amplitudes. The factor
of v/2 appears because the phasors V,,(x) are defined such that their magnitude is
the effective or RMS value of the voltage. By switching to phasor quantities we
can eliminate by cancellation the time dependency terms exp(jwt) altogether from
equations 4.9 and 4.10 and introduce replacements parameterised by the angular
frequency w, as follows,

(4.11) I,(z) = jwCepi(x)V (x) dx
—_ h — —
(4.12) L(z) = jwdz / Cint(2,9) (7 (z) = V() dy
— h _
(4.13) AV (z) = —jwds / M (z,y)I(y) dy
0

in which we have quietly dropped the w subscript from the phasor magnitudes V(x)
and I(z) and we must remember that these quantities refer to a single frequency
component. Equation 4.13, together with the charge conservation equation, which
is now

(4.14) Ij(z) + I.(z) + dI(z) =0

constitute a complete set of differential equations, the solution of which for a given
w gives the current and voltage phasors V(z) and I(z) for that component for
the entire coil, and these equations are satisfied independently for each frequency
component.

If a top-load is present, an additional displacement current I; - not shown on the
diagram - leaves the element for the toroid, and we have

(4.15) Li(z) = jwCior(2)(V(2) = V(h)) dx

in which we assume that the toroid is connected to the top of the coil and thus has
potential V' (h). This simply adds another term into 4.14 and other electrodes at
RF potentials can be treated similarly.

We’ll now substitute 4.11 and 4.12 into the charge conservation equation 4.14
and rearrange a bit to get the equations in a slightly more compact form,

dI(x)

h
(4.16) = —jwCezt(2)V () — jw /0 Cint(z,y)(V () — V(y)) dy
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h
(4.17) T = =i [ M) dy

The reader may recognise these as being similar to the differential equations which
apply to a uniform transmission line, the significant difference being the presence
of the integrals on each right hand side. These integrals describe a type of coupling
which is negligible in, say, a coaxial cable. They represent longitudinal coupling
occurring through the mutual inductance and internal capacitance. If the Tesla coil
were continuously deformed - increased in length and reduced in radius - so that it
gradually became a long thin straight wire, the Cj,; terms would gradually become
small compared with Ce,¢, eventually rendering the longitudinal coupling through
Cint negligible. At the same time the non-diagonal terms in M (z,y), which are the
ones responsible for the inductive longitudinal coupling, will also become negligible,
leaving behind only the diagonal self inductance terms M (z,z). The end result of
this deformation is an open wire non-uniform line with the equations

(418) d;f:) = _jwcewt(w)v(x)
(4.19) d‘g;m) = —jwM(z,z)I(z)

in which the diagonal terms M (x,z) are seen to be to the self inductances per unit
length. These are the standard equations of a transmission line valid in the absence
of longitudinal coupling. A great many results follow from these due to the essential
simplicity of the system, in which the current and voltage at a point on the coil are
dependent only on the voltage and current respectively at the same point. However,
once we introduce the non-local terms of the longitudinal coupling, it becomes hard,
if not impossible, to solve the equations analytically, although some progress can
be made for a coil of infinite length. The problem of solving 4.16 and 4.17 can
however be tackled numerically without difficulty by replacing the integrals and
differentials with finite sums and differences, and employing a discrete form of the
physical reactance distributions to obtain the equations in matrix form, which are
then solved by Gaussian elimination [5].

It should be noted that the coupling equations derived so far are valid for a
solenoid in any configuration as we have not yet introduced any boundary conditions
to restrict them specifically to Tesla coils. We can represent the normal Tesla
secondary configuration which has the base of the coil connected to the ground
plane by the constraint ¥ (0) = 0 and the open circuit top of the coil by I(h) = 0.
With these two extra equations, the solutions are constrained to only those possible
on a grounded base Tesla coil with an open top. Alternatively the toroided top is
represented by

(4.20) I(h) = jwCiopV (h) + jw /h Cior(V(h) =V (z)) dx
0

where C},p is the capacitance of the top-load to the ground plane and the inte-
gral describes the total displacement current entering the toroid to coil distributed
capacitance.
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FIGURE 5.1. The input impedance spectrum

5. THE RESONANCES

We are particularly interested a certain class of solutions of 4.16 and 4.17 - those
which correspond to the resonances. Suppose for a moment that a solution exists
in which all the voltages V' (x) are in phase with one another. Then since each term
in the right hand side of 4.16 has a coeflicient of j, all the current differentials,
and therefore the all the currents I(z), are also in phase with one another but 90
degrees out of phase with all the voltages. This uniform-phase current distribution,
when inserted into the right hand side of 4.17 reproduces the original uniform phase
proposed for the voltage distribution. The solutions of the equations which have
this character are called resonances and the values of w for which these occur are
the resonant angular frequencies. The resulting uniform-phase voltage and current
distributions are called standing waves. This phenomena is not peculiar to Tesla
coils, but is a characteristic of any conductor which has distributed inductance and
capacitance - in other words any conductor of non-zero size.

At the resonances, the voltage and current amplitudes take on a particularly
simple form: At two points in each cycle the entire coil voltage is momentarily
zero and simultaneously the current along the coil is at its maximum instantaneous
value. At two other points, 90 degrees away in phase, the coil current is momentarily
uniformly zero and the voltages reach their maximum instantaneous values all along
the coil. Thus at resonance the stored energy is transferred completely from one
field to another twice in each cycle. At frequencies in between the resonances, these
descriptions don’t apply, and there is never a point in the AC cycle at which the
entire energy is stored in just one of the fields. Thus, only at the resonances is the
maximum voltage achieved for a given stored energy.

We can explore the location of these resonances in the frequency domain by
solving the equations 4.16 and 4.17 for a wide range of values of w and plotting the
results on a graph. A convenient parameter to plot is the ratio V(0)/(0) which
is the complex impedance seen between the base of the coil and the ground plane.
The magnitude of this impedance is shown in figure 5.1 plotted against frequency
w/2m for a typical secondary coil. The resonances are revealed by the peaks and
dips of the impedance response. These are numbered on the impedance graph and
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FIGURE 5.2. Voltage distribution of the 7th resonance

the reasoning behind the choice of numbers will be explained shortly. In fact the
equations modeled to produce this graph are slightly extended from those given in
4.16 and 4.17 in order to include the effect of losses. If the loss-free equations were
modeled, the dips would extend down to zero ohms, and the peaks would rise to
infinity. When the grounded-base boundary condition V' (0) = 0 corresponding to
the normal Tesla secondary configuration is applied, the even numbered resonances
are suppressed and only the odd numbered solutions are available. Conversely,
if an open-circuit base condition 7(0) = 0 is applied, as in a bipolar coil, the odd
numbered resonances are suppressed instead. Tesla coil operation normally exploits
the shorted-base resonance numbered 1, or sometimes the open-circuit resonance
2.

To explain the numbering scheme, we’ll take a look at the voltage profile |V (z)|
corresponding to the resonance number 7. The standing wave profile consists of
a number of peaks, and in terms of travelling waves reflecting from the ends and
mutually interfering, the peaks each have a width of half a wavelength. Thus the
example shown suggests the coil has an electrical length of 7 quarter wavelengths
and with this in mind we have numbered the resonances according to how many
quarter wavelengths are present. Note that when top-loading capacitance is present
at the end of the coil, the final quarter-wave of the standing wave will appear to be
truncated, the missing electrical length being provided by the top-load reactance
itself.

It is clear from the input impedance graph that the resonant frequencies are
not harmonically related. The even numbered resonances are only a little higher
in frequency than the odd numbered resonance immediately beneath. From about
the 4th resonance upwards they exhibit an approximately constant frequency step
between consecutive even numbered resonances, and similarly between the odd
numbered. The longitudinal coupling due to mutual inductance, and particularly
the internal capacitance, in combination with the finite length of the coil, is re-
sponsible for the variation of wave velocity with frequency which lies behind these
intervals.
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6. AMPLITUDE PROFILES

In the previous section we have seen that at the resonances all the voltages V' (x)
share a common phase, and so do all the currents I(z), with the two phases sepa-
rated by 90 degrees. With the current and voltage polarities chosen in figure 4.1,
the current phase leads the voltage phase. We can exploit the uniform phase to
make another major simplification in which we replace the complex phasor ampli-
tudes with scalar magnitudes. We'll start with the equation 4.17 for the differential
voltage along the coil. This is an equality in complex quantities and therefore it
must be satisfied separately by the real and imaginary components on each side.
We can for example write

(7 h
(61) TR — o [ MGy RUTw) dy

Now the reference phase for the phasor quantities involved in a set of equations
can be chosen arbitrarily. Let’s say that for the particular resonance occurring at
angular frequency w the voltages are all entirely real, ie we are choosing a phase
reference such that the relative phase of all the voltages is zero. We can see then
from equation 6.1 that the currents are all entirely imaginary. With our choice
of phase reference, we can write down the following two relationships between the
complex phasor amplitudes and the peak magnitudes:

V(z) = V2R(V (2))
(6.2) I(z) = V23(I(x))
= —V2R(jI(x))

where we now begin to use the unbarred quantities specifically for the peak magni-
tudes. Using these equations to replace the phasors V(z) and I(z) in equation 6.1
gives

h
d‘;im) = w/o M(z,y)I(y) dy

and the same substitutions into the real part of equation 4.16 gives

dI(z)
dx

With these two equations we now have scalar relationships between the current
and voltage peak amplitudes which are valid only at resonant angular frequencies
w since we have obtained them by making use of the phase relationships which
exist between the phasor quantities only at resonance. Since 6.3 and 6.4 are linear
we are free to take V(z) and I(z) as either peak or RMS values. Examination
of these differential equations reveals a number of general characteristics of the
amplitude profiles which we’ll look at from the point of view of the single quarter-
wave resonance. Figure 6.1 shows the relative current and voltage amplitudes for
an example secondary. The amplitudes are normalised to a base current and top
voltage of 100%. These profiles differ quite a bit from those found in a uniform
transmission line with no longitudinal coupling. Significantly, the current maxima
occurs some distance above the base of the coil - in this example 34%, but always
below the midpoint, as we shall see later.

(6.3)

h
(6.4) = —wCent(@)V (@) - w / Cint(&,9) (V () = V(1)) dy
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FIGURE 6.1. An example current and voltage profile

A number of features can be noted from this graph. Firstly, the current is always
positive - there are no zero crossings by definition, since this is a single quarter-wave
resonance. Therefore the right hand side of equation 6.3 is always positive and as
a result, V() is monotonically increasing throughout the length of the coil, which
implies that the voltage maximum is always right at the top. Secondly, the current
remains significant all the way along the coil - it falls below 40% of Ip4se only in
the top 5% of the coil. Thirdly, there is a point on the coil - in this case at about
39% height, below which the voltage curve is concave and above which it is convex.
This point of inflection in the voltage curve is invariably located a little higher up
the coil than the current maximum, and at this point the voltage gradient is higher
than anywhere else on the secondary. Fourthly, the current rises, in this case, to a
maximum around 40% higher than Ij,s.. The origin of this maximum can be seen
from equation 6.4. The term wClezi(x)V (z) on the right is always positive, since
as we’ve already noted, V (z) is always positive. If this were the only term on the
right, then dI(z)/dz would be negative all along the coil, and the current would
be monotonically decreasing from a maximum of Ip,s. at the base. However the
longitudinal term arising from C;,; alters this picture. In the upper part of the coil
the terms (V(z) — V(y)) are positive more often than negative, and in view of the
symmetry and approximate uniformity of Cjn¢(x,y) this observation applies to the
integral as a whole. Thus in the upper part of the coil, the second term is of the
correct sign to assist the first term in enforcing a monotonically decreasing current.
At some point lower down the coil however, the value of the integral changes sign
and if the Cj, is large enough we will see a positive dI(z)/dz for part of the lower
half of the coil, thus giving rise to a current maximum within the coil rather than
at the base. The current maximum occurs at a position Z;;,, in which the two
terms on the right of 6.4 cancel one another, ie when

h
(65) Cezt(mimaac)v(wimaz) = _/0 Cint(ximazay)(v(ximaz) - V(y)) dy

Below the current maximum there is more displacement current entering the coil
via Cjpn; from higher up, than there is current leaving the coil to ground via Ceg. In



PN2511 THEORY NOTES 15

Current and Yoltage Amplitudes

T T T T T
......................... i voltige
[ =] N S i

t
|
|
|
=150 I
|
|
|
|
|
|
|
|

Relative Amplitude
T
=
T

z2e -

5] =] 45 1] 1] 108
Fosition - Percent

FIGURE 6.2. Profiles of a more typical secondary

fact the particular coil to which figure 6.1 relates has a h/d ratio of unity and was
placed high off the ground - a choice intended to maximise the effects of internal
capacitance in order to clearly demonstrate the elevated current maximum [8]. In
a more typical, larger h/d configuration, with the coil base less than one coil-length
above the ground plane, the increased external capacitance reduces the current
maximum in both amplitude and elevation. Figure 6.2 shows an example of a coil
with h/d = 3. Here we see the voltage inflection point occurs at 28% and the
current maximum at 14% height. In general, as the h/d ratio is reduced, or the
coil is raised further above its ground plane, the location of the current maximum
and the voltage inflection point move upwards towards the middle of the coil.

The inflection point is a significant position on the Tesla secondary since it
identifies the location of highest voltage gradient. Its location some way above the
current maximum can be understood by examining 6.3. If the magnitude of M (z,y)
was constant along the coil, right up to the ends, we can see that the maximum
voltage gradient would coincide with the maximum position of I. However the
absence of turns continuing beneath the base of the coil reduces the average value
of M(z,y) as x approaches the base. This average increases to a peak exactly at the
mid-point of the coil and the resulting slope in the average size of M (z,y) has the
effect of making the right hand side of 6.3 greatest somewhere above the maximum
of I(y), displacing the point of maximum voltage gradient a little above the point
of maximum current, but not higher than the mid-point. For a coil operating in
free space or at high elevation, the capacitance is dominated by C;,; and both the
inflection point and the current maximum converge towards the mid-point of the
coil. As we’ve seen in these two examples, the location of the inflection point and
the current maximum both fall as the h/d ratio is increased.

7. EQUIVALENT REACTANCES

When considering the operation of the secondary in the context of the Tesla
system as a whole, it is often convenient to represent the overall characteristics of
the secondary in terms of quantities which can be incorporated into circuit theory
calculations. For this reason we define a number of useful equivalent reactances
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and explain their use. These equivalents can only be defined for a single resonant
frequency at a time, and unless otherwise stated this can be assumed to be that of
the quarter-wave resonance. We will make frequent use of the coil base current and
top voltage so we will introduce the abbreviations

Ibase = j(O)

= Viop = V()

We will also use the corresponding unbarred quantities when considering just the
scalar peak amplitudes, and on these occasions the equations will often be valid
regardless of whether we take the amplitudes to be RMS or peak values, so long as
we stay with a choice of one or the other. We will now define a number of equivalent
reactances and then go on to show how these are related to each other and to w,
‘/top; and Ibase-

7.1. DC capacitance. If we apply a potential to the base at an arbitrarily low
frequency then the voltage along the coil can be considered uniform. Under these
conditions all the infinitesimal external capacitances Cey¢(x)dz can be regarded as
acting in parallel and consequently the total capacitance seen between the base
terminal and the ground plane at low frequency is given by the integral of all these
along the coil,

h
(7.2) Cae = / Cont(z) dz

This quantity is fairly easy to measure and provides a useful cross-check on com-
puted values of the external capacitance distribution.

7.2. Equivalent shunt capacitance. The total current reaching the ground plane
from the coil is given by the integral of all the infinitesimal contributions Is(z) of
displacement current through the coil’s external capacitance. By charge conserva-
tion, this total must equal the base current of the coil, therefore we have

h h
(7.3) Tyase = / I(z) = jw / Cont(2)V () da

We can choose to pretend that this entire current flow comes from a single lumped
capacitor charged to V;,p, which we’ll call the equivalent shunt capacitance Cs,
with the understanding that the equivalent is obtained by referring all the shunt
capacitance to the top of the coil. We could have chosen any other point, but the
accessible V}Gp is the one we are most interested in. Thus we choose to define Cl,,
by

(74) I_base = jwcesv;&op
and eliminating I,,. by substituting from 7.3 gives
1 [k _
(7.5) Ces = = / Coezt(2)V(x) dx
Viop Jo

which describes a summing of the external capacitance distribution with each con-
tribution weighted by the normalised voltage at that point. The equivalent shunt
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capacitance can be measured by taking simultaneous measurements of I;4s. and
Viop, from which

1 Ibase
7.6 Ces = ———
(7.6) s T
At the quarter-wave resonance, C,; is usually less than 70% of the value of the DC
capacitance.

7.3. Equivalent energy capacitance. It is often useful to know how much energy
needs to be stored in the resonator to obtain a given V;,,. To this aim we consider
the energy stored in the resonator at a point in the cycle where all the energy is
momentarily stored in the capacitance. At this instant the energy stored in each
infinitesimal element of external capacitance Ceyi(x) dx is given in terms of the
peak voltage across it, by

(7.7) %cm(;c)V(m)2 dz

and so the total energy stored in external capacitance is the integral of this over all
possible positions z,

h
(7.8) By = % /0 Cont(2)V ()2 dz

Similarly with the internal capacitance, the capacitance Cins(z,y) dx dy between
infinitesimal elements at z and y stores an energy

(9) 5 Cint(2,9)(V(2) = V()" d dy

and integrating this over all possible combinations of z and y gives the total energy
stored in the internal capacitance as,

h ph
(7.10) Bu=7 [ [ Coslan)Vie) = V) oty

where an extra factor of 2 appears in the denominator since the integral counts each
contribution twice. The total stored energy is the sum of these two expressions and
we can ask what single lumped capacitance would store this same energy if charged
to Viop. The result is the equivalent energy capacitance C,. defined by

1
(7.11) 5Ceem?m = Eegt + Eint
and thus C,. is given by
1 h
Cee = / Cont(@)V (2)? dov

top JO
(7.12) L

o [ Conle) (V@) = V)2 dsdy

top JO 0

which can be thought of as a weighting of the capacitance contributions by the
normalised square of the voltage across them. This capacitance can be used to
obtain the top voltage from the stored energy. For example, if an amount of en-

ergy O.SCprin";i is introduced from a coupled primary resonator, the peak voltage
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achieved at the top of the secondary can be seen to be

Cpr'i
Cee

which is a familiar formula to Tesla coil builders, although we can now be quite
specific about which capacitance to use. Ce¢ also finds an important use in the
description of the output impedance of the resonator. It is found that Cl, is slightly
lower than C¢s for coils with medium or larger h/d ratio. In coils with small h/d
the energy storage due to internal capacitance can become very significant and Ce,
will exceed C,;.

At higher resonances the energy storage due to Cj,; increases dramatically, ef-
fectively discouraging the use of these higher modes for Tesla coils. The internal
capacitance, and therefore C,., can be reduced by splitting the secondary, as in a
secondary-tertiary combination or a split bipolar secondary.

(7 13) ‘/top = Vpri

7.4. DC inductance. We see from equation 4.13 that the EMF induced across an
element of length dx at position x is given by the integral of all the contributions
due to an infinity of source currents in the rest of the coil, so that the differential
voltage is

(7 h
dZix) = —jw/O M(x,y)I(y) dy

The integral of this differential voltage over the length of the coil must equal the
top voltage, ie

h 37 h h
@15 V= [ B o= [ [ M) dyds

If a current is passed through the coil at a sufficiently low frequency, the currents
all along the coil can be considered equal to Ip4s.- With this value providing all the
current, terms in 7.15, we have for the total voltage induced across the whole coil,

(7.14)

h rh
(7.16) Viop = —jw/ / M (z,9)Ipase dz dy
o Jo

From this we can see that the DC or low frequency inductance is given in terms of
M (z,y) by

k h
(7.17) L4 = / / M (z,y)dzdy
o Jo

which is the straight sum of all the components in M (z,y). For the Tesla coil, the
DC inductance is calculated quite accurately by Nagaoka’s formula and the defini-
tion of Lg4. enables a calculated mutual inductance profile to be checked against a
straightforward measurement.

7.5. Equivalent series inductance. At higher frequencies the current can no
longer be considered uniform along the coil and the top voltage is given in terms
of the current by 7.15 rather than by 7.16. We can define an equivalent lumped
inductance which will induce this same total voltage when carrying the same current
as the base current of the coil, ie

(718) V;fop = _jWLesI_base
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where L. is the equivalent series inductance of the coil at the frequency w, and the
minus sign originates from our choice of current direction in figure 4.1. Eliminating
Viop by substituting from 7.15 gives an expression for this equivalent inductance,

1 h h _
(719) Les =5 F / / M(Z.: y)I(y) dy dz
Ibase 0 0

For coils of medium to large h/d, we find that L., is typically between 70% and
100% of Lg.. In the case of small h/d, L.s can exceed Lg. by up to 20% due to
the extra EMF induced by the current circulating through the internal capacitance
- current which does not appear at the base. Addition of top-load capacitance
directly to the resonator (such that the loading capacitance E-field is shared with
the coil) enhances this circulating current and therefore tends to increase the value
of L.s. Remote capacitive loading tends to make the current profile more uniform
and thus moves the L.s/Lg4. ratio towards unity.

7.6. Equivalent energy inductance. Just as we did for the capacitance, we can
form an equivalent inductance by considering the total energy stored in the magnetic
field. The energy in the field which can be attributed to the mutual inductance
between elements at  and y is given by
M(z,y)I(z)I(y)dedy fx#y
7.20 1
(7.20) §M(IL‘,£U)I(IE)2 de? ifz=y

and the total stored energy is the integral of 7.20 over all pairs of x and y,

h h
(7.21) % /0 /0 Mz, y)I(z)I(y) do dy

We'll refer this energy to the base current by defining the equivalent energy induc-
tance L. as the lumped inductor which would store the same energy if it were
carrying a current Ip,se. Then we have the definition

1 h h
: / / M(2,9)1(2)1(y) de dy

(7.22) L, = 2

base
which amounts to a weighting of the distributed inductance by the normalised
square of the current. It is found that L., is usually slightly lower than L.,, and
the difference increases with the h/d ratio. At small h/d or high elevation, L.
can exceed both L.s and Lg4.. The equivalent energy inductance finds a useful
application in the description the input impedance of the resonator.

8. EQUIVALENT RELATIONSHIPS

A number of interesting identities can be established which follow directly from
the definitions of the equivalent reactances given in the previous section, which we
will now illustrate using the values appropriate to the quarter-wave resonance.

To begin with, conservation of energy requires that at resonance

1 1
(8.1) §Leel,?ase = 5Ceev2

top
so that we have the relation between base current and top voltage

V;Sop _ Lee
Ibase Cee

(8.2)
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This ratio is the magnitude of the forward transfer impedance Z¢; of the resonator
and is seen to have a simple relationship to the equivalent energy reactances.
We also have two other relationships between base current and top voltage, this
time using the phasor quantities,
I_base = jwcesv;ﬁop

(8.3) g CesTto
V;Eop = _]wLesIbase

from which we see immediately that

1
4 =
(8 ) “ V LCSCGS

This equation is probably less useful than it may at first appear, since in order to
either measure or calculate L.s; and Cg; it is necessary to know w in advance. We
also have for the forward transfer impedance,

— V;fop 1

= _jw-Les = =

. 7
(8 5) n base ones

and by combining 8.5 with 8.2 we can see that

_ 1 /Lee _ 1 Cee
(8‘6) v Les Cee B Ces Lee
and finally we have the identity
(87) CeeLes = CesLee

So far in this section and the previous, we’ve not said anything about the equiv-
alent reactances when a top-load is present. All the equivalents have been defined
for the bare coil only. The reader may be tempted to consider that a top-load
capacitance Cy,p would simply act in parallel with C,. and C.; when employed in
equations 8.2 and 8.3, and the formulae which follow from them, but this would
not be correct. There are two reasons for this. First of all the physical capacitances
Cezt and Cjy, are modified by the nearby presence of the top-load conductor and
this, together with the appearance of the toroid to coil capacitance Cior(x), means
that the values of C.. and Cp, calculated for the bare coil are no longer correct
when a top-load is brought into the field. Secondly, the equivalent reactances are
formed by weighting the physical reactance according to the current and voltage
amplitude profiles present in the coil, and these profiles are modified by the addition
of any loading. This latter problem is more serious in that the perturbation still
takes place even if the electric field of the loading capacitance is far enough away
from the coil field for it to be considered an independent lumped capacitance, and
thereby leaving the physical coil capacitance unchanged. One way around this is to
alter the definitions of the equivalent reactances to include the effect of a top-load
explicitly. The resulting equivalents now relate to the resonator as a whole, rather
than just the coil. The following equations summarise the revised definitions.

h
(88) Cdc = Ctop +/ Cezt ('Z.) dzx
0

h
(8.9) Ces = Ciop + ; / Copt(2)V (2) dz
‘/top 0
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h
Cuoo = Crop + VLQ / Cont(@)V ()2 da
(8.10) top 70

h rh
tgir [ [ Coulen V@) - Vi) drdy

where we understand that Cip¢, Cing, V (), and I(z) are now all to be measured or
calculated with the top-load or remote lumped capacitance in place. This approach
is exact, but is tantamount to admitting defeat in our stated goal of being able
to use the equivalent reactances of the coil in circuit theory calculations, at least
if we want to retain complete accuracy. Nonetheless, for most practical design
purposes, in which a degree of approximation is usually tolerable, the equivalent
reactances can be taken in series or parallel with the extra reactances representing
other components connected to the top of the resonator.

9. INPUT IMPEDANCE

So far we have looked at a number of relationships involving the base current I, e
and the top voltage V;op, which involved equivalent reactances defined by integrals
over the current and voltage distributions. These were defined for the loss-free
case but retain their correctness with negligible error in the presence of the modest
loss factors characteristic of Tesla secondaries. We now turn our attention to the
input and output impedances, and we shall see that these are very dependent on
the resonator’s loss. In this section we will look at the input impedance seen when
driving the coil through the base at frequencies in the vicinity of its quarter-wave
resonance.

We will drive the coil by inserting an AC supply of zero source impedance in series
with the base connection to the ground plane. As a result, our boundary constraint
V(0) = 0 which applied to the grounded base must be replaced with V' (0) = Vqse
where the phasor Vi, describes the magnitude and phase of the input voltage.
We now have the entire external circulating current of the resonator Iy,,. passing
through the source, and the source thus sees a complex impedance Vg /Ipgse. We
will represent this impedance in terms of separate real and imaginary components
defined by

Figure 2.1 shows the magnitude of Z;, in the region close to the single quarter
wave resonance, together with its real and imaginary components. The frequency
of resonance is defined by the point at which the imaginary component crosses
zero. Below resonance, the input reactance is negative, appearing to the source as
a capacitance. Above resonance the positive reactance presents an inductance to
the source. At the point of resonance the input impedance is entirely real, Vjqs. is in
phase with Ij,s. and the source sees a load resistance R;,. At resonance therefore,
the source must provide a real input power P;, given by
¥, 2
P, = ”/‘I;%LJ = ‘I_base|2Rin
in
— vazase — Ib2aseRi"
" 2R;, 2

9.2)
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F1GURE 9.1. A close look at the input impedance near the quarter
wave resonance

in which as usual the unbarred voltage and current symbols refer to the peak
amplitudes.

When the resonator is continuously supplied with energy from the AC source,
the steady state equilibrium is eventually reached in which all the input power is
absorbed by the resonator and the stored energy no longer increases. The loss of
energy from the resonator can be described by means of a quality factor QQ defined
as usual by

(9.3) Q=2

If in the steady state equilibrium, energy is delivered to the resonator at a rate of
P;, watts, then using %Ceel/;%p for the stored energy, we have

stored energy
w
energy lost per cycle

stored energy Cee V2
4 = = -
(9-4) Q=w—7p DY)

Looking at this the other way, we can say that the input power needed to raise a
peak top voltage V;,p, when driven by a continuous CW source into the base is
CeV2,

2Q

We can equate equations 9.2 and 9.5 to obtain

(9.5) P =w

CeeViep V2 2. Ri
. Pin — op _ base _ base"™n
(96) Y720 2Rin 2
From this we obtain a pair of identities. First we have the transfer impedance,
‘Qo IQHCQ
9.7 Zpp = P =
( ) 7t Ibase wcee

which when equated with 8.2 and 8.5 gives two alternative expressions for the input
resistance as a function of @,

Whee _ Cee
Q  wC%LQ
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which demonstrates that a declining Q factor causes an increase in the apparent
input resistance. A second identity obtained from 9.6 relates the base voltage to
the top voltage, in other words the voltage gain,

Vtop Q
9.9 = /
( ) Vbase WRinCee

which, by virtue of 9.7 and 9.8 can also be written as

Viop _ 12| _Q__ 1

%ase Rzn w \/m

Since, as we mentioned in section 7, we usually have L., < L.s and C,, < C¢, for
coils with medium or larger h/d, and remembering that w = 1/4/L.;C.s, we can see
that the coefficient of @) in 9.10 will usually be larger than unity, which explains why
the observed voltage gain in a Tesla secondary often exceeds the value @ expected
in a lumped component series LCR circuit.

Turning our attention now to the reactive component jX;, of the base input
impedance, we can represent this reactance as the combination of an equivalent
input series capacitance C;, and series inductance L;,, at least in the close neigh-
borhood of an odd-numbered resonance wy, such that

1
Y LGczn

1
and Z;(w)=Ripn+j|wliypn — —— ] W~ W
zn( ) n J ( n UJCi ) 3 0
The reader may be forgiven for expecting that these input reactances would be
given by the equivalent series and shunt reactances L.s and C.s defined earlier. In
fact the inductance which provides a correct model of the reactive part of the coil
base impedance is the equivalent energy inductance L... We have,

(9.10)

W =
(9.11)

Ly = Lee
(9.12) 1 LesChs
woLee Lee

where Cj, is chosen so that
(913) LGCzn = Lesces

in order to satisfy the first part of 9.11. Thus, we have for the coil base input
impedance in the vicinity of an odd numbered resonance at wyo,

L L
Zin(w) = wOQee +J (WLee - ﬁ) y WX=Wo
L
(9.14) = % (1+ jy(w))
where y(w) =Q (w% - %)

Note that @) will also be a function of w, but it changes sufficiently slowly that we
can regard it as constant over the domain of 9.14.

The factor 1+ jy(w) is the impedance response of the base of a lightly loaded coil
near to its resonance, normalised to the impedance at resonance. At frequencies
w4 and w_ above and below wy respectively, at which the current falls by a factor
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FI1GURE 9.2. Input impedance magnitude as output load varies

v/2, the phase angle between current and voltage is 45 degrees and the magnitude
of the impedance response has risen by v/2. As a result, we have

y(wy) =1
(9.15) y(w ) = 1
so that
0@ _ ) _
(9.16) (wo w+>

o(-2)-
wo w_

If we divide one of the two equations 9.16 by the other, we obtain

(9.17) w_ (Wi —wg) = wi(wg —w?)
from which we get
(9.18) Wi =wiw_

In other words, the resonant frequency is the geometric mean of the upper and
lower 3dB frequencies. When we add the two equations 9.16 together, we get

w2 —wE wi-w?: 2
9.19 + 040 - -
(9.19) W4 Wo + wW_wo Q
from which we get the usual formula relating bandwidth and Q,
(9.20) Q=—2
Wy — W

The picture of the input impedance presented so far is a rather idealised one due to
the use of an elementary series LCR model. In practice as increased load is applied
to the resonator, the current and voltage distributions alter significantly, so that
the values of the effective reactances involved in the input impedance will change.
Figure 9.2 shows how the input impedance varies for a coil with an unloaded reso-
nance at 150 kHz and a Z¢; of around 35k2. The various responses correspond to
different values of load resistance applied to the top of the resonator. The highest



PN2511 THEORY NOTES 25

of which, 100M(2, results in an input impedance of 1002 at resonance. Already,
even with this modest loading, the input impedance has more than doubled from
its unloaded value of around 4012, illustrating the extreme sensitivity of the input
impedance to the load conditions. This immediately suggests the potential for diffi-
culties when coupling power to the base of a coil under conditions where the output
load resistance may vary. As further load is applied, the Q factor obviously deterio-
rates rapidly, and also the resonant frequency falls too. This occurs mainly because
the current distribution is becoming more uniform, thereby increasing the effective
inductance. Eventually, when the load resistance is about equal to the transfer
impedance Zy; of the resonator, the magnitude of the response is approximately
flat, although generally capacitive, across the range. When the load resistance falls
below approximately Zy;, the input resistance begins to resemble a parallel reso-
nance, and the highest voltage point on the solenoid is now at the base. From the
input impedance magnitude curve it appears that the quarter wave resonance is
gradually dampened down, to re-emerge at a lower frequency, albeit inverted. The
situation is a little more complicated than that, as can be seen from the variation of
the phase angle response with the change in load resistance, as shown in figure 9.3.
When the load resistance is 1M(2 and above, the phase angle crosses zero at a point
close to, or a little above the frequency of minimum impedance magnitude. As
the load resistance is reduced below 1M down to 100k(2 the zero-phase frequency
rises above the original resonant frequency, while at the same time the frequency of
minimum impedance magnitude falls rapidly. Within this region, the frequency at
which maximum top voltage occurs lies roughly centered between the two. As the
load resistance is reduced below 100k}, a point is reached where the phase never
does cross zero, and the impedance remains capacitive throughout the range.
These observations of the variation of input impedance with changes in load
point to a number of potential difficulties likely to be encountered when driving the
coil from a low impedance source at the quarter-wave frequency. To begin with,
a good power-transferring match can be obtained into the low input impedance of
the unloaded coil. However, as the stored energy increases, typically over many
tens of cycles, a point is reached where corona or brush discharges begin to form.
The energy leaked through this mechanism will appear to be dissipated in a load
resistance which reduces in a non-linear way as the top voltage increases. This
is reflected to the coil base as a rise in the driving point impedance, as well as a
shift in the resonant frequency. The power admitted to the resonator is therefore
reduced below the available source power and the net result is an equilibrium which
limits further resonant rise of the stored energy. Another problem can occur when,
as with most CW exciters, the operating frequency is established by a positive
feedback loop responding to the coil current - a feedback which aims to set the
frequency so that a certain constant total phase change, eg zero, occurs around the
complete loop. We can see from the phase angle diagram that such a mechanism
may get into difficulties when the load resistance has fallen to within reach of the
forward transfer impedance, since there is no longer the required positive slope of
phase change with frequency. In practice, a Tesla coil driven with CW is not likely
to suffer a load impedance anywhere near as low as the transfer impedance as long
as it is limited by brush-type discharges - the power transfer equilibrium is likely
to settle at a level of discharge corresponding to a load resistance of at least several
times the transfer impedance, with a loaded Q factor of order 5 or 10 at the most.
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FIGURE 9.3. Input impedance phase as output load varies

The situation is somewhat different if the resonator is able form an arc discharge
to ground from the top of the coil. This typically happens while the resonator
is at or approaching the brush discharge equilibrium described above. For our
purposes the arc discharge instantaneously dumps the stored charge in the topload,
and therefore resets the stored energy of the resonator to a lower level, while at
the same time presenting a large step voltage transient to the top of the coil.
Resonant rise then continues from the lower energy level, but now in the presence
of additional decaying resonances excited by the discharge transient. As a result,
in some circumstances, the CW driver may find itself acting as a load for energy
reaching the base of the coil over quite a wide range of frequencies.

10. OuTPUT ADMITTANCE

In the region of an odd-numbered resonance, the grounded-base resonator, when
viewed from the top, resembles a lossy parallel resonance circuit, which we will treat
as a three branch circuit by means of its admittance parameters. If we consider the
coil energised through the top by means of a constant current source I,,;, then we
can describe the output admittance by the definition

_ Iout
V;Eop

(101) }/;ut = Gout + jSout

where Gy is the output conductance, and S,,; is the output susceptance, both
being functions of w. With CW excitation, we have the relation, complimentary to
equation 9.2,

(102) P. = |f0“t|2 — Iozut — V?opGout
" Gout 2Gout 2
We also have, from 9.5,
Cee V2
(10.3) P, = wo ee "top

2Q
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which leads to the conductance

woClee
(10.4) Gout = 2 0
We can represent the susceptance S as
1
(105) Sout = wC’out - wLout

and similar argument to that used in the previous section leads us to conclude that
CVout = Cee
(10.6) [ LesCes
out = w(%cee B Cee

so that the output admittance is

Yout(w) = woCee +j(wCee — _ Cee DWW
Q wLesCes
(10.7)
WOCee .

=0 (1+jy(w))

If we invert the Y5, (w) to obtain a Z,,:(w) we can see that the product Z;;, Zyy; is
L

(10.8) ZinZouwt = C—: =7}

so that in a sense, Zy; is the closest we have to a characteristic impedance for the
solenoid at resonance.

11. SUMMARY

We have shown how the physical reactances of the resonator can be described
by distribution functions and we have applied these along with the charge conser-
vation and the induction laws to obtain the differential equations which govern the
operation of the solenoid at frequencies low enough for retardation of potentials
to be ignored. The general character of the voltage and current solutions which
apply to a grounded base Tesla secondary have been described, and we have given
unambiguous definitions of some useful equivalent reactances. This represents a
basic introduction to the physics of Tesla resonators.

NOTES AND REFERENCES

[1] The TSSP web site at http://www.abelian.demon.co.uk/tssp/
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[3] An eloquent exposition on the subject of capacitance is to be found in an essay by Fred
Erickson, ‘The Capacitance Between Two Spheres’, available in postscript from
http://www.ttc-cmc.net/~fme/spheres.11-03-99.ps.gz
which deals with the self and mutual capacitance of spheres and capacitance to infinity, using
the earth-moon system as an example.

[4] Another work by Fred Erickson, ‘The Non-Ideal Parallel-Plate Capacitor’, which presents
a highly readable introduction to the mathematical techniques of capacitance determination
using the example of parallel plates to illustrate several methods. Available in postscript from
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[5] For an example program to do this, see
http://www.abelian.demon.co.uk/tssp/model.html
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[6] See http://www.abelian.demon.co.uk/acmi/ for a simple example of the use of current
filaments to calculate the distributed mutual coupling due to a primary winding.

[7] Most capacitance solvers use the diagonal elements of Cj,: to hold the self-capacitance
Cinfinity of the element, but in our implementation we prefer to put this in a separate
function Ceg¢.

[8] The current profile of a coil very similar to this has been accurately measured by Terry Fritz,
see http://www.abelian.demon.co.uk/tssp/tfcp260302/
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