
Inductors and Transformers 4–1

INDUCTORS AND TRANSFORMERS

We now consider the inductor. Like the capacitor, it appears in all sizes. There are signifi-
cant differences, however. One is that the commercial availability of prefabricated inductors is
much less than for capacitors. Engineers dealing with inductors will routinely buy coil forms
and wire, and assemble their own device. With capacitors we can get by with only a vague
notion of how they were designed and built. With inductors, we must do the design, which
forces us to have a deeper understanding of the steps involved.

A second difference is the amount of electromagnetic theory required. With capacitors, we
could escape with a mention of electric field and permittivity. Inductors require that we jump
right into some challenging concepts of magnetic fields and energy, and even set up some line
or volume integrals. We will refer back to a first course in electromagnetic theory as needed,
and even pull out some results from more advanced courses.

1 Definitions

Consider a coil of wire as shown in Fig. 1. The resistance of the wire can be modeled as a
separate lumped device so we can think of the coil as being perfectly conducting. If i is a
finite dc current, the voltage v will be zero, as would be expected across a perfect conductor.
If a time varying current is applied, however, there will be a related voltage observed across
the coil. From the circuit theory viewpoint, the relation is given by

v = L
di

dt
(1)

where L is the inductance of the coil in henrys (H).
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Figure 1: Simple Inductor

We will also observe a time varying voltage when we pass a magnet by the coil, even if the
current is zero. (Faraday was the first to observe this, in 1831). Moving a magnet is philo-
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sophically quite different from applying a current, but it turns out that we can mathematically
describe both situations with the electromagnetic equivalent of Eqn. 1.

v = N
dφ

dt
(2)

where N is the number of turns on the coil and φ is the magnetic flux passing through the
coil. The direction of a flux φ that is produced by a current i is determined by the right hand
rule. That is, if you curl the fingers of your right hand in the direction of the current flow,
the thumb will point in the direction of the flux.

Setting Eq. 1 and Eq. 2 equal to each other and integrating to remove the differential
operator yields

Li = Nφ (3)

This equation has circuit quantities on the left and field quantities on the right, allowing us
to move back and forth between the two ways of thinking. Solving for the inductance L gives

L =
Nφ

i
=

λ

i
(4)

where we have introduced the flux linkage λ. This term better describes the case where φ is
not constant between adjacent turns. The flux linkage can be considered as the equivalent
flux which gives all the correct results when passing through a single turn coil.

The flux φ and the flux linkage λ are proportional to the current i. The relationship is
linear if there are no ferromagnetic materials in the vicinity, which then gives us a constant
value for L independent of the actual value of i. Thus for the air-cored coil, L is just a function
of the geometry of the coil, much like our expression for capacitance that was calculated from
area and separation of plates in the previous chapter. Unfortunately, inductance formulas
tend to be much more complicated than the formula for a parallel plate capacitor.

The electric power input to the inductor is

p = vi = Ni
dφ

dt
(5)

There are no losses in our perfectly conducting coil, so whatever power flows in at one time
must flow out at another time. In the sinusoidal case, power flows in for half a cycle and back
out the next half cycle. The power flow results in stored magnetic field energy in the coil.
The differential energy input during the differential time dt is

dW = p dt = Nidφ (6)

where W is the stored energy in the field.
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We want to relate this stored energy to the field quantities B and H, where

B = µrµoH T (7)

B is the magnetic flux density in tesla (T) or webers/m2 (Wb/m2), H is the magnetic intensity
in A/m, µr is the relative permeability (= 1 for vacuum), and µo is the permeability of free
space in henrys per meter.

µo ≡ 4π × 10−7 H/m (8)

The relative permeability is very close to unity for all materials except for the ferromagnetic
materials iron, cobalt, nickel, and a number of special alloys. For these materials, µr may
range from 10 to 105. The relative permeability is also a function of magnetic intensity in
ferromagnetic materials, making what would be a linear problem into a nonlinear one.

The magnetic flux density B may also be expressed in gauss, where 104 gauss = 1 tesla.
The earth’s magnetic flux density varies from 0.2 to 0.6 gauss, depending on location. The
60 Hz magnetic flux density in a home or office is usually less than a few milligauss except
near a source (electric heater, computer monitor, electric razor, blow dryer, etc.) where
it may be a few tens of milligauss or even more. A modern well-designed 60 Hz power
transformer will probably have a magnetic flux density between 1 and 2 T inside the core. It
requires considerable effort and special designs to get much above 2 T. The necessary current
density causes heating in the conductors, unless, of course, the conductors are cooled into the
superconductor region. Fluxes as high as 8 to 16 T have been used in accelerators and energy
storage systems.

Other conversion factors which might be needed are:

• 1 Oersted = 250/π = 79.6 ampere-turns/meter

• 1 Tesla = 10,000 gauss

The flux φ passing through an area A is the integral of the magnetic flux density B over
that area.

φ =
∫

B dA Wb (9)

which becomes simply φ = BA if B is constant over the area.

We also need Ampere’s circuital law

Ni =
∮

H · d� (10)
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This states that the current enclosed by any arbitrary path is given by the integral of the
dot product of the vector H and a differential length d� along that path. If we extend our
coil around into a toroid shape, H (the magnitude of H) will be essentially constant inside
the toroid and Ampere’s circuital law becomes

Ni = H� (11)

where � is the length of a circle in the toroid. The energy stored in the magnetic field is now

dW = Nidφ =
H�

i
iAdB = (Vol) H dB (12)

where Vol = A� is the volume where the magnetic energy is stored. The total energy can be
found by integration.

W = (Vol)
∫ B

0
H dB Joules (13)

If the permeability is constant (the magnetic circuit is linear) the integral can be quickly
evaluated.

W =
(Vol)
µrµo

B2

2
= (Vol) µrµo

H2

2
J (14)

This equation has much important information in it. Suppose that we have a magnetic circuit
that is entirely ferromagnetic. H is determined by the current and is independent of the
permeability. B = µH is large and the total energy stored is large. Suppose now that we
cut a small air gap across the magnetic circuit. The flux φ drops substantially because of
the increased reluctance of the magnetic circuit. B will have about the same (smaller) value
in both the iron and the air gap, so H = B/µ will be much larger in the air gap because
of the lower permeability. The total integral of H · d� stays the same but a large fraction
of the integral comes from the air gap portion. So the total energy stored decreases as the
air gap length increases, and the fraction of the total energy stored in the air gap increases
dramatically.

Although not as instructive, the total energy can also be expressed in circuit quantities as

W =
1
2
Li2 J (15)

We can also use the result from Ampere’s circuital law to determine the flux φ. In the
simple case of uniform flux density B and no air gap, this becomes

φ = BA = µrµoHA =
µrµoNiA

�
(16)
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2 Ferromagnetic Losses

Two things happen when a time varying magnetic field exists inside a ferromagnetic material.
Magnetic domains rotate in the material to align with the magnetic field and the Faraday
voltage induced inside the material produces what are called eddy currents. The rotation of
domains each cycle produces a frictional type loss called the hysteresis loss Ph. Experimentally,
we find that

Ph = KhfBz
max (17)

where Kh is an empirical property of the material, f is the frequency, Bmax is the maximum
flux density, and z is an empirically determined value, usually between 1.6 and 2.0 for power
frequency transformer steels.

The hysteresis loop of the material is obtained by plotting the magnetic flux density B
against the magnetic intensity H as shown in Fig. 2. The area inside the hysteresis loop is the
energy dissipated each cycle. Some ferromagnetic materials have very thin hysteresis loops,
resulting in low losses, while others have relatively fat loops and correspondingly high losses.
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Figure 2: Hysteresis Curve

As the driving magnetic field increases, the resulting flux density increases at a slower
rate as more domains become aligned with the magnetic field. This phenomenon is called
saturation. If linearity is desired, then the transformer should be operated at low flux levels
where the hysteresis loop is nearly linear. For power transfer, however, it is most cost effective
to operate the device into its saturated region. The exact amount is a matter of engineering
judgment.

We might define at least two definitions for permeability, from which we can get some
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guidelines for saturation. These are the dc and ac permeabilities

µdc =
B

H
(18)

µac =
∆B

∆H
(19)

The two permeabilities are identical for very low drive levels that are symmetric about zero.
If a dc bias exists, the ac permeability will always be smaller than µdc. The ac permeability
is the main parameter of interest to filter choke designers. At least some engineers consider
a material to be saturated when the dc permeability has dropped to half its initial value, or
when the ac permeability has dropped to one-eighth of its initial value [12, page 26,28].

A magnetic circuit with eddy currents is shown in Fig. 3. The current is inversely pro-
portional to the resistance seen by the induced Faraday voltage. In a large piece of steel the
resistance can be very low, even though the resistivity of steel is not very low compared with
a good conductor like copper. For this reason, magnetic circuits at power frequencies are
usually made of thin sheets of steel, called laminations, which are on the order of 0.5 mm
thick.

The equation for eddy current loss has the form

Pe = Kef
2B2

max (20)

The experimentally determined constant Ke depends on the resistivity and the dimensions of
the material. A detailed analysis shows that Ke is proportional to the square of the lamination
thickness, so it is important to keep the laminations as thin as possible. Eddy current losses
can be kept acceptably low at 60 Hz with little difficulty, but become excessive at a few kHz,
even with very thin laminations. Therefore, inductors or transformers built for operation
above 1 kHz are rarely made of laminated material. Instead, they are made of even smaller
pieces of ferromagnetic material, typically powdered iron or ferrites. Powdered iron suffers
from low permeability and low resistivity compared with ferrites, so we shall concentrate on
the latter.

3 Ferrites

Ferrites were developed during and after World War II. The chemical formula for ferrites
is Z Fe2 O4, where Z stands for any of the divalent ions: zinc, copper, nickel, iron, cobalt,
manganese, or magnesium, or a mixture of these ions. The bulk resistivities are in the range of
102 to 109 ohm-cm, compared with 10−5 ohm-cm for powdered iron. This very high resistivity
reduces the eddy current losses so that ferrites can be used for frequencies up to 20 MHz or
even more.
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Figure 3: Eddy Currents in Magnetic Circuit

Ferrites are basically a form of ceramic, made by mixing fine powders of appropriate oxides,
compressing the mixture, and firing it in carefully controlled atmospheres at temperatures of
about 1100oC to 1200oC. The most common ferrites are mixtures of two ferrite powders, either
manganese-zinc or nickel-zinc. Magnetic properties can be varied over a significant range by
changing the ratio of the two divalent ions and by changing the processing conditions. Each
material is given a unique code number. Ferroxcube, for example, assigns a “3” as the first
digit of its MnZn materials (3C85, 3B7, 3D3, etc.) and a “4” as the first digit of NiZn materials
(4C4, 4A, 4A6, etc.)

3.1 Ferrite Temperature Limits

The Curie temperature (the temperature at which the ferrite becomes nonmagnetic) can be
relatively low. The Ferroxcube 3E5 ferrite may have a Curie temperature as low as 120oC.
Other Ferroxcube materials have Curie temperatures up to 300oC. If there is any possibility
of the ferrite device operating at a temperature above 120oC due to internal losses, a ferrite
material with an adequate Curie temperature must be selected.

The copper wire used in winding inductors or transformers remains mechanically stable
at temperatures far above the ferrite Curie temperature, so the wire itself is not of concern.
However, the insulation on the wire may fail at relatively low temperatures. Polyvinyl chloride
(PVC) insulated wire typically has a maximum temperature rating between 80oC and 105oC,
for example. Magnet wire has a somewhat higher rated temperature, such as the Belden poly-
thermaleze coating rated at 180oC. Belden also makes Teflon coated wires rated at 200oC and
260oC.
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Heat is dissipated from the surface of the inductor or transformer by a combination of ra-
diation and convection. Heat radiated depends on the device surroundings, while convection
depends on air flow over the device, so it is very difficult to accurately predict temperature
rise in most installations. In any case, both radiation and convection will be directly propor-
tional to the total exposed surface area of the core and windings. We can therefore describe
the independent variable as total watts dissipated in core and copper per unit area of the
device. The dependent variable, temperature rise, is directly proportional to the dissipation
in W/cm2. One manufacturer (Magnetics) has calculated a temperature rise of 10oC for a
surface dissipation of 0.01 W/cm2 and a rise of 100oC for a surface dissipation of 0.1 W/cm2,
given some reasonable assumptions. Each increment of 0.01 W/cm2 results in a temperature
rise of 10oC.

Example.

An inductor has a total heat dissipation of 0.06 W/cm2 and is in an ambient temperature of 50oC.
What is a reasonable estimate of inductor temperature?

Based on the Magnetics guideline, 0.06 W/cm2 should yield a 60oC temperature rise above the
ambient, so the inductor temperature will be 60 + 50 = 110oC. PVC insulated wire should not be used
in this situation.

4 Mutual Inductance

Consider two inductively coupled coils as shown in Fig. 4. The current i1 produces a flux φ11

that links with i1. Part of φ11 is lost as leakage flux φ1� and part of it, flux φ21 links both
currents i1 and i2. Current i2 likewise produces a flux φ22 with part of it, flux φ12, that links
both currents. The relationship among these fluxes is

φ11 = φ21 + φ1� (21)

φ22 = φ12 + φ2� (22)

The self-inductance of circuit 1 is

L11 =
N1φ11

i1
(23)

and similarly for L22. The mutual inductance of circuit 1 with respect to circuit 2 is based
on the flux in circuit 1 that is produced by the current in circuit 2.

L12 =
N1φ12

i2
(24)

and similarly for L21.
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Figure 4: Mutual Inductance

It can be shown that L12 = L21 in a homogeneous medium of constant permeability. To
emphasize this fact we define a new symbol M for the mutual inductance.

M = L12 = L21 (25)

The maximum value for M is
√

L11L22. We define the coefficient of coupling k as

k =
M√

L11L22
(26)

The coefficient of coupling can reach values as high as 0.998 in iron-core transformers. It
is difficult to make k much above 0.5 in air-core transformers.

The voltage v2 produced by the primary current i1 is given by

v2 = M
di1
dt

(27)

If the two inductors of Fig. 4 are connected in series, the total inductance is

L = L11 + L22 ± 2M (28)

where the plus or minus is determined by whether the mutual flux tends to reinforce or
cancel the fluxes of the individual coils. This is a convenient method to measure the mutual
inductance. Just measure the series inductance twice, once with one coil reversed, subtract
one result from the other, and solve the resulting expression for M .
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5 Inductance Formulas

Let us now examine the inductance formulas for some simple geometries. First we will look at
the inductance of a nonmagnetic coaxial transmission line. The radius of the inner conductor
is a, and the inside radius of the outer conductor is b. From Ampere’s circuital law, it is easy
to show that, for a < r < b,

H =
I

2πr
A/m (29)

and therefore

B = µoH =
µoI

2πr
T (30)

We cannot use φ = BA since B varies from inner to outer conductor. Instead, we integrate
to find the flux crossing any radial plane extending from r = a to r = b and from, say, z = 0
to z = �.

φ =
∫

B dS =
∫ �

0

∫ b

a

µoI

2πr
dr dz =

µoI�

2π
ln

b

a
Wb (31)

The flux links the current once, so N = 1. From Eqn. 4 the inductance for this length � is

L =
φ

I
=

µo�

2π
ln

b

a
H (32)

Suppose now that we try to use this expression to find the inductance of a segment of
isolated straight conductor. As the radius of the outer conductor b −→ ∞, the corresponding
inductance also becomes infinite. What this result tells us is that we never actually have a
isolated straight conductor carrying a current without some return path. We must always
consider the return path for current if we expect to get inductance values that have any
relationship to reality.

In the situation of a toroidal coil of N turns and a current I, as shown in Fig. 5, the
magnetic flux density is

B =
µrµoNI

2πr
T (33)

For a toroid cross section that is rectangular, as shown in Fig. 6, the integration is straight-
forward.

φ =
∫ b

r=a

∫ T

z=0

µrµoNI

2πr
dr dz =

µrµoNIT

2π
ln

b

a
(34)
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We then multiply the flux by N to get the total flux linkages, and divide by I to get the
inductance. For the rectangular cross section case, this is

L =
µrµoN

2T

2π
ln

b

a
H (35)
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Figure 5: Toroidal Coil
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Figure 6: Toroidal Coil Cross Section

5.1 Tesla Coil Inductance (Wheeler)

Many times we just want to make a quick estimate of the inductance of some simple structure
without making extensive calculations. Many approximate formulas have been developed in
the days before hand calculators and computers, of which one will be given here. Watch out
for the fact that the above formulas are given in the standard SI units, but the following
formula is in the English system.

The low-frequency inductance of a single-layer solenoid is approximately [17, p. 55].

Lw =
r2N2

9r + 10�
µH (36)

where r is the radius of the coil and � is its length in inches. This formula is accurate to
within one percent for � > 0.8r, that is, if the coil is not too short. It is known in the Tesla
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coil community as the Wheeler formula. The structure of a single-layer solenoid is almost
universally used for Tesla coils, so this formula is very important. In normal conditions (no
other coils and no significant amounts of ferromagnetic materials nearby) it is quite adequate
for calculating resonant frequency.

Example

What is the approximate inductance of an air-cored solenoid with r = 8 inches, � = 30 inches, and
N = 175 turns?

L =
(8)2(175)2

9(8) + 10(30)
=

1960000
372

= 5270 µH

If one needs the inductance for other geometries, Terman [17] has a number of expressions. A
somewhat more recent paper by Fawzi and Burke [3] gives formulas for calculating the self and mutual
inductances of circular coils in a form suitable for computer calculation.

6 High Frequency Transformers

Conventional low frequency transformers consist of coils of wire wound around steel lamina-
tions. As mentioned earlier, the losses, especially the eddy current losses, become excessive
at frequencies above a few kHz with this technology. Transformers built for operation at
frequencies above a kHz or so are built around ferrite cores or air cores. Ferrite cores yield
very compact, efficient transformers. Saturation limits operation to moderate power levels,
however. If extremely large currents or powers are involved, then the air core transformer
may be the logical choice. We shall discuss both types.

The symbolic construction of a transformer is shown in Fig. 7. A voltage v1 produces
a current i1 which in turn produces a flux φ1. Part of φ1 links the secondary winding and
produces a voltage v2 by Faraday’s Law. If some load is connected, a current i2 will flow.
This current produces a flux which opposes the original φ1 according to Lenz’s Law. This
reduces the voltage induced in the primary so that more primary current will flow for a given
source voltage. A complete description of transformer action in terms of field quantities has
been developed only rather recently [4, 6, 9, 10, 16].

7 The Ideal Transformer

It will be convenient to describe the actual transformer in terms of an ideal transformer. This is
a transformer with no copper losses, no hysteresis or eddy current losses, and perfect magnetic
coupling between primary and secondary. For such a device, the relationships between input
and output voltages and currents are
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Figure 7: A Two Winding Transformer

v1

v2
=

N1

N2
(37)

i1
i2

=
N2

N1
(38)

The relationship between the input and output apparent power is

v1i1 = v2
N1

N2
i2

N2

N1
= v2i2 (39)

The input impedance is

Z1 =
v1

i1
=

v2N1/N2

i2N2/N1
= Z2

N2
1

N2
2

(40)

The ideal transformer thus changes the level of voltage, current, and impedance between
primary and secondary.

8 The Actual Transformer

A complete circuit model of the actual transformer is shown in Fig. 8.

In Fig. 8, R1 and R2 are the resistances of the primary and secondary windings, L1 and
L2 are the leakage inductances, Rm is an equivalent resistance representing the hysteresis and
eddy current losses, and Lm is the magnetizing inductance. The circuit is usually simplified
by eliminating the ideal transformer and replacing all the impedances, voltages, and currents
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Figure 8: Transformer Model

on the secondary side with their equivalent values as seen by the primary. If we define the
turns ratio a as

a =
N1

N2
(41)

the simplified circuit is as shown in Fig. 9.
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I1 j(X1 + a2X2) R1 + a2R2

�
I2/a

aV2V1 jXm Rm

Figure 9: Actual Transformer Referred to Primary

We have also shifted to the phasor notation in Fig. 9, replacing inductances by their equiv-
alent reactances (X1 = ωL1, etc.), and the instantaneous voltages and currents by the phasor
quantities. The notation can be shortened even more by defining an equivalent resistance and
reactance

Req = R1 + a2R2 (42)
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Xeq = X1 + a2X2 (43)

The load current is given by

I2

a
=

V1

Req + jXeq + a2ZL
(44)

The copper losses are given by

Pcopper = (I2/a)2Req (45)

and the core losses are given by

Pcore =
V 2

1

Rm
(46)

Other conducting materials can be used, such as aluminum, but it is tradition to refer to
these series losses as copper losses regardless of the conducting material. It is good practice
to keep the copper losses and core losses within a factor of two of each other, at least on large
power transformers. The two losses tend to work against each other in a design. The core
losses are reduced by reducing the maximum magnetic flux density in the core, which requires
either a larger core cross-sectional area or more turns on each winding. Either approach
requires more wire, which increases the copper loss. There may be instances where the core
losses in a ferrite core used at high frequencies are much higher than the copper losses in
reasonably sized wire. In such cases, one should go ahead with proper sizes rather than try
to reduce the wire size and increase the copper losses to attempt to maintain some arbitrary
parity.

The air core transformer has no core losses, of course. Rm can be removed from Fig. 9 in
such cases.

9 Transformer Design

Now we are ready to design a simple transformer. We want to select wire sizes, core size, core
material, and number of turns on primary and secondary so that the transformer will meet
the requirements without overheating, but without being so large that it is more expensive
than necessary.

The most important rating is the required voltage of operation. This determines core size
and material, and the number of turns. The wire size is then selected to handle the transformer
current rating without excessive copper losses. As we have seen before, the voltage is related
to the flux by Faraday’s Law.
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v2 = N2
dφ

dt
(47)

To a good approximation, the input and output voltages are sinusoidal. That is,

v2 =
√

2V2 cos ωt (48)

where V2 is the rms output voltage.

The flux is then found by integration.

φ =
1

N2

∫
v2dt =

√
2V2

ωN2
sinωt (49)

The flux density B is given by B = φ/A, where A is the cross- sectional area of the core.
The maximum flux density, Bmax, is found when sin ωt = 1.

Bmax =
√

2V2

ωN2A
(50)

Bmax is determined either by published data for a particular type of magnetic material, or
by measurement. It is typically in the range of 1 T for low frequency laminated transformer
steel, and in the range of 0.1 to 0.3 T for ferrite cores. The most efficient use of the magnetic
material occurs when Bmax is slightly above the knee of the magnetization curve. As the
material saturates, the permeability µ = B/H starts to decrease. The inductance is directly
proportional to permeability, so the inductance starts to decrease also. But the inductance is
defined as L = Nφ/i. The flux φ is proportional to the sinusoidal voltage so it does not satu-
rate. Therefore, as the permeability and the inductance decrease, the current i must increase.
The peak of the magnetizing current increases rapidly above the knee of the magnetization
curve, and can exceed the peak of the rated current if the transformer voltage is increased too
far. The magnetizing current becomes very nonsinusoidal, with a high harmonic content, at
higher voltages. As a rough guideline, the peak of the magnetizing current should not exceed
perhaps 10 % of the peak of the rated current. That is, if the rated current were 5 A rms,
with a peak of

√
2(5) = 7.07 A, then the peak of the magnetizing current should not exceed

about 0.7 A.

Once we know Bmax, the minimum number of turns can be determined from the above
equation.

N2,min =
√

2V2

ωBmaxA
(51)

Example.
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A Ferroxcube 204XT250-3F3 ferrite core is to be used for a transformer at 50 kHz. The rms input
and output voltages are to be 10 V. Determine the proper number of turns on each winding.

We first examine a published hysteresis curve for this material, which indicates that saturation is
acceptable up to about 0.3 T, at least for low frequency operation. We then check a chart of core
loss versus flux density which shows a recommended operating range of 100 to 300 mW/cm2 for this
material. If the frequency is above about 25 kHz, then Bmax must be reduced to maintain the total
heating in this range. At 50 kHz, Bmax = 0.2 T causes a heating of slightly under 200 mW/cm2, which
is deemed acceptable. From the published mechanical data, the area A is 0.148 cm2. The minimum
number of turns is then

N2,min =
√

2(10)
2π(50 × 103)(0.2)(0.148 × 10−4)

= 15.2 turns

We would normally round up to the next higher integer, 16 turns.

Suppose we were interested in using the same ferrite core for the same 10 V transformer at 60 Hz.
Assuming Bmax = 0.3 T, the minimum number of turns is

N2,min =
√

2(10)
2π(60)(0.3)(0.148× 10−4)

= 8450 turns

Any attempt to wind this many turns through a toroid opening of only 0.312 inches inside diameter
would be frustrating at best. This points out the fact that low frequency transformers must be relatively
large.

The power rating of a transformer can be determined from Ampere’s circuital law and
Faraday’s law, which state, for the sinusoidal case,

H� = Ni (52)

v = N
dφ

dt
= Nφmaxω cos ωt (53)

Converting these equations to rms values yields the apparent power

S = V I = ωNBA(
H�

N
) = ωBHA� = ωBH(V ol) (54)

where B and H are rms values and V ol is the volume of the magnetic material. We see
that the apparent power is directly proportional to the frequency and to the volume of the
transformer. This helps explain why aircraft use 400 Hz rather than 60 Hz. The transformer
volume and mass are reduced by the same ratio, thus increasing the aircraft payload.

Example.

The Ferroxcube core of the previous example has a volume of 0.462 cm3 and a relative permeability
of 1800. What is the power rating at 50 kHz and a Bmax = 0.2 T?
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V I = ω
Bmax√

2

(
Bmax√
2µrµo

)
(V ol) =

2π(50, 000)(0.2)2(0.462 × 10−6)
(2)(1800)(4π × 10−7)

= 1.283 W
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