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Abstract. Numerical results are presented for the formation of breakdown streamers which
bridge a 1 mm gapbetween a positive 50µm radius hyperboloid point and a plane, when a dc
voltage is applied. The results show that, for such gaps, no streamers form at voltages lower
than or equal to 2.5 kV and that streamers bridge the gap at higher voltages. The streamer
speed and radial dimensions of the streamer are found to linearly increase with the applied
voltage and this agrees with what is predicted by existing two-dimensional models.
The electric field in the streamer channel behind the streamer head is initially found to be
much lower than that for longer gaps and becomes comparable only later in the development
of the streamer. The results are obtained using a pre-existing finite-difference code and a new
finite-element code developed using a new finite-element flux-corrected transport (FE-FCT)
method. The finite-element results are shown to be almost identical to the finite-difference
results. The finite-element method, however, through the use of unstructured grids, reduces
significantly the number of unknowns and makes the modelling of streamers and arbitrarily
shaped electrodes in two dimensions a feasible task.

1. Introduction

To date, streamer calculations have generally been carried
out for gaps of 2–5 cm [18] with 20 kV applied between
the electrodes. However, there are many applications in
which breakdown occurs in smaller gaps (of the order of
millimetres) at lower voltages (2–5 kV), such as contact
breaker points and the corona treatment of plastics [2, 3, 10].
In this paper, such short gaps are considered using the same
finite-difference code as that which was used successfully
for larger gaps [18], as well as a new finite-element code
developed for gas-discharge calculations [8]. By using the
new finite-element method, unstructured grids can be used,
which reduce significantly the number of unknowns for the
same problem, compared with the finite-difference (FD)
structured grids; hence less computation time is required.
This makes the modelling of gas-discharge problems in two
dimensions, which has been prohibitively time consuming up
to now, a feasible task and allows the modelling of arbitrarily
shaped electrodes.

Numerical results are obtained for a roughly∼50 µm
radius point, 1 mm from a plane in air at atmospheric
pressure, with a positive voltage applied to the point. The
finite-difference method, which had previously been used
for 2–5 cm gaps with a 0.5 mm point, is used to compute
the formation of streamers in this short 1 mm gap.

A crucial factor in the success of the finite-difference
code has been the use of a very accurate flux-corrected
transport (FCT) algorithm to describe the movement of
electrons and ions, with no numerical diffusion or spurious
oscillations and negative density values. Accordingly, a new
finite-element code, using once again the FCT technique,
was developed [8] and coupled with a finite-element solution
of Poisson’s equation, to produce a new gas-discharge code
capable of describing streamer formation.

In order to test and verify the finite-element code, the
same calculations as those for 1 mm gap with an applied
voltage of 3 kV are repeated using the finite-element code
and the results are compared with the finite-difference results.
(Seldom is it possible to compare the results from such
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radically different codes under identical conditions, due to
the large number of calculations involved.)

The finite-element method is finally used to study
the effects of the channel radius and applied voltage on
the streamer speed, maximum field and current output for
the 1 mm point–plane gap.

2. Theory

Complete characterization of streamer phenomena would
require the use of two-dimensional models. However, due
to the fact that very long calculations are employed for
such problems, together with the fact that streamers occupy
a narrow cylindrical channel between the anode and the
cathode [14], a fixed channel radius is assumed and the
equations for charges are solved in one dimension only.
The electrical field must, nevertheless, be computed in two
dimensions by solving Poisson’s equation. So the electron,
positive-ion and negative-ion continuity equations including
ionization, attachment, recombination and photo-ionization
are solved simultaneously with Poisson’s equation, but in one
dimension, to give electron and ion density distributions and
the electrical field.

The coupled continuity equations for electrons, positive
ions and negative ions are:

∂Ne

∂t
= S +Neα|We| −Neη|We| −NeNpβ

−∂(NeWe)

∂z
+
∂

∂z

(
D
∂Ne

∂z

)
(1)

∂Np

∂t
= S +Neα|We| −NeNpβ −NnNpβ − ∂(NpWp)

∂z

(2)
∂Nn

∂t
= Neη|We| −NnNpβ − ∂(NnWn)

∂z
(3)

where t is the time, z is the distance from the cathode,
Ne, Np andNn are the electron, positive-ion and negative-
ion densities, respectively, andWe, Wp and Wn are
the electron, positive-ion and negative-ion drift velocities,
respectively. The symbolsα, η, β and D denote the
ionization, attachment, recombination and electron-diffusion
coefficients, respectively. The termS is the source term
due to photo-ionization [18]. The recombination coefficients
βep and βnp are taken to be constant and equal toβ
following Morrow and Lowke [18], for recombination is not
an important process on the time scales involved for short
point–plane gaps.

Poisson’s equation is given by

∇(εr∇φ) +
e

ε0
(Np −Nn −Ne) = 0 (4)

where ε0 is the dielectric constant of free space,εr the
relative permittivity,e the electron charge andφ the electrical
potential. The electrical fieldE is computed using

E = −∇φ. (5)

It is assumed that the transport properties of the gas (such
asα andWe) are determined by the ratioE/N , whereE
is the local electrical field andN is the neutral gas number

density. This assumption is valid only for high pressures [16].
The actual expressions fitted to the material data functions are
tabulated elsewhere [18, 20].

The continuity equation for electrons, equation (1), is of
second order and therefore requires two boundary conditions:
at the anodez = 0.1 cm andNe = 0 and at the cathode
z = 0 andNe = 0. The continuity equations for positive and
negative ions, equations (2) and (3), are both of first order and
thus require only one boundary condition each: at the cathode
Nn = 0 and at the anodeNp = 0. At absorbing boundaries,
the heavy-particle densities are finite and determined by the
flux from the body of the discharge. The current,I , in
the external circuit, due to the motion of electrons and ions
between the electrodes, is calculated using Sato’s equation
[24] which is modified to include negative ions and electron
diffusion:

I = Ae

Va

∫ d

0

(
NpWp−NnWn−NeWe+D

∂(Ne)

∂z

)
El dz (6)

whereVa is the applied voltage,A the cross sectional area of
the discharge channel,d the gap length andEl the Laplacian
electrical field.

Poisson’s equation is solved on a two-dimensional mesh
with boundary conditionsφ = φ0 (the applied voltage) at the
anode surface,φ = 0 at the cathode and∂φ/∂r = 0 along
the axis of symmetry. At the open boundary, the charge
is assumed to be zero, so the exact solution of Laplace’s
equation is used [7, 12].

3. Solution methods

Much work has been done on the development of models
for streamer problems in one dimension by using the same
set of equations [9, 19, 26]. It is worth noting, however,
that all these models are limited to structured grids (for the
two-dimensional solution of Poisson’s equation). It is clear
that the extension of these models in fully two-dimensional
form would result in very long calculations due to the fact
that, when one is using structured grids, many unknowns are
required, especially for gas-discharge problems, in which
a very fine resolution is required for certain parts of the
space domain (such as the anode). There are also fully
two-dimensional finite-difference models [1, 6, 11, 28], again
using structured grids, but these are limited to small gaps or
small time domains due to the computational expense of the
calculations.

The problem presented in this paper is solved using
one of these finite-difference models, developed by Steinle
et al [26], and the new finite-element method, developed
by the authors [8], to demonstrate the advantages of the
finite-element unstructured grids over the finite-difference
structured grids. This also acts as a good validation of this
code before extending it to two dimensions. The inputs for
the two codes are the same so that they act as a detailed check
on each other.

The finite-difference method uses a successive over-
relaxation method [23] to obtain the two-dimensional
axisymmetrical solution of the electric potentialφ from
Poisson’s equation. The continuity equations are solved
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using a very accurate fourth-order flux-corrected transport
algorithm [26].

The second method uses a new finite-element algorithm
recently developed by the authors [8], which uses the standard
Taylor–Galerkin method for the solution of Poisson’s
equation, together with a new improved finite-element flux-
corrected transport (FE-FCT) algorithm for the continuity
equations. This improved FE-FCT algorithm is an extension
of the method proposed by Lohneret al [13], which has been
used very successfully in fluid mechanics and has the distinct
advantage that no operation splitting for multidimensional
problems is required. The two-step Lax–Wendroff method
is used as the high-order scheme and mass diffusion is added
to transform this high-order scheme to a low-order one.
Diffusion is added by subtracting the lumped mass matrix
from the consistent mass matrix and the diffusion coefficient
used is the one inherent in the upwind scheme. This is the
optimal diffusion coefficient for the performance of the FCT
algorithm. More details can be found in [8].

For fast-moving transient phenomena, such as streamer
fronts, a moving mesh is usually required. However, the
continuous movement of the mesh is inappropriate for this
calculation. Firstly, many geometrical parameters would
have to be recalculated at every time step, making the
computation inefficient. Secondly, the electrons move in the
opposite direction to that of the streamer front, increasing
the effective value ofWe relative to the mesh and reducing
the value of the time increment required for numerical
stability.

The strategy adopted for both the methods (finite
difference and finite elements), in order to follow the streamer
front, has been to use a fine uniform mesh, across which the
streamer head propagates, and an expanding mesh away from
this region towards the electrodes. When the streamer reaches
the end of the fine mesh region, the mesh is re-zoned so that
the streamer head is again at the start of the fine mesh region.

At the anode, a fine mesh is also used to resolve the
anode-fall region. The mesh expands smoothly away from
the anode and then contracts towards the streamer-head
region. Similarly the mesh expands away from the streamer-
head region towards the cathode, but with no fine mesh region
at the cathode. The smooth changes and expansion of the
mesh are achieved using exponential functions. The total
number of axial mesh points used to represent the 1 mm
gap between the cathode and the anode both for the finite-
difference method and for the finite-element method is 400.
The mesh size at the streamer head is 2µm. The continuity
equations are solved on this mesh of 400 points.

Poisson’s equation is solved on a two-dimensional mesh.
For the finite-difference method, radial dimensions have to
be defined and further axial dimensions have to be defined so
that the shape of the anode is included. The radial mesh has a
minimum size of 5µm at the centre, expanding exponentially
with 50 mesh points out to a radius of 1 mm. The shape of the
anode is included by defining a new axial mesh point for each
radial mesh point such that the position defined by the axial
and radial coordinates lies on the anode surface. In this way,
the anode is included using an extra 40 mesh points. Thus,
for the finite-difference method, Poisson’s equation is solved
on a mesh of 440 axial points and 50 radial points, which

0 1 2 3 4 5

x 10
−3

0.095

0.096

0.097

0.098

0.099

0.1

0.101

0.102

0.103

0.104

0.105

Radial distance (cm)

A
xi

al
 d

is
ta

nc
e 

(c
m

)

Figure 1. The high-resolution mesh at the anode region for the
finite-element solution of Poisson’s equation.

results in about 20 000 unknowns. Furthermore, for the finite-
difference method, Poisson’s equation is solved using the
successive over-relaxation (SOR) method [23] which takes
up to 50 iterations at each time step and hence dominates the
computation time of the whole problem.

On the other hand, with the finite-element method, un-
structured grids are used, through the use of triangular ele-
ments, which reduce the number of unknowns significantly
for the same problem and allow one to model the bound-
aries more accurately. Figure 1 shows the anode region of
the mesh used for the solution of Poisson’s equation using
the finite-element method. It is clearly seen that a very fine
resolution is used in the anode region to resolve the steep
gradients, as required, but, away from the axis of symme-
try, where the space charge is zero, a very coarse mesh is
used because the solution there does not vary steeply. The
total number of unknowns used for the solution of Poisson’s
equation is now around 4000. In this way, the accuracy is
maintained at less computational expense, compared with
the finite-difference method, in which structured grids must
be used and the boundaries are represented more accurately,
which allows us to model arbitrarily shaped electrodes.

Furthermore, with the finite-element method, the
problem reduces to solving the following equation after
discretization:

Mφ = q (7)

which gives
φ = M−1q (8)
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Figure 2. Electron densities at various times: full line, finite-difference results; and (×), finite-element results.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5
x 1014

P
os

iti
ve

 Io
n 

D
en

si
tie

s 
(c

m
−

3)

Distance from the cathode (cm)

t=4.3ns t=3.9ns t=3.2ns t=2.5ns t=1.7ns

Figure 3. Positive-ion densities at various times: full line, finite-difference results; and (×), finite-element results.

whereM is a global matrix associated with the finite-element
method [25], assembled by the elemental matrices,φ the
vector of unknown electrical potential values at each node
and q the vector of charges, obtained from the continuity
equations, at each node. For this problem, the matrixM
is constant for a constant mesh, for it depends only on the
voltage and the mesh, so it can be inverted at the beginning
of the calculation and stored. Thus, the 50 iterations
for each time step of a problem of 20 000 unknowns
(the finite-difference case) reduce to a single matrix–vector
multiplication of 4000 unknowns (the finite-element case)
and hence the computational effort is reduced significantly.

4. Results

Results are presented for the development of streamers from
the positive point of a point–plane gap in air at atmospheric
pressure. The point is a hyperboloid with a 50µm radius
of curvature at the tip, the gap spacing is 1 mm and a
positive voltage is applied at the start of the calculation. The
calculations refer to the situation in which there is no pre-
existing space charge and the voltage can reach a steady
state before the discharge starts, as was the case for the
original Trichel pulse calculation of [15]. Experimentally
there is often a long time lag before a suitable seed electron
is available to start the discharge, during which time the
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Figure 4. Negative-ion densities at various times: full line, finite-difference results; and (×), finite-element results.
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Figure 5. The net charge at various times: full line, finite-difference results; and (×), finite-element results.

voltage reaches a steady state. Subsequent discharges are
considerably affected by the existence of space charge, just
like the case for Trichel pulses, for which subsequent pulses
are smaller than the first [4]. In this paper we consider only
the first corona phenomena.

4.1. A FE–FD comparison

In order to test and verify the finite-element method, a
streamer calculation is performed both with both the finite-
element code and with the finite-difference code, with exactly
the same inputs. For this test a voltage of 3 kV is applied to
the point at the start of the calculation and the calculation

is initiated by approximately 100 electron ion pairs released
0.2 mm from the anode att = 0. The radial charge density
is distributed radially using

ρ(r, z) = ρa(z) e−100r2
(9)

whereρa(z) is the axial charge distribution. The charge is set
out up to a distance of 0.0075 cm and is set to zero beyond
this point for this problem. This choice of radial distribution
is imposed on the calculation in order to make the results
directly comparable with those published previously [18] and
in order to use exactly the same program as that used in [18]
for the validation of the finite-element program. The effects
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Figure 6. The field along the axis of symmetry at various times: full line, finite-difference results; and (×), finite-element results.

of changing the radial dimensions and the radial profile to a
square profile are discussed in a later section.

Figures 2–6 show the electron, positive-ion, negative-
ion and net charge densities and the field along the axis
of symmetry, respectively, at various times during the
movement of the streamer towards the cathode. Figures 7 and
8 show the field obtained in the whole of the space domain
from the solution of Poisson’s equation at timest = 1.7 and
3.2 ns. The results obtained with the two methods are shown
to be in good agreement and this gives us confidence that
the finite-element method gives comparable results at less
computational expense than the finite-difference method for
the solution of streamer problems. Thus the finite-element
method is used in the subsequent sections for the analysis of
the case of a 1 mmpoint–plane gap.

4.2. The radial charge distribution

It is a weakness of the present approach that a radial profile
must be specified; however, such methods are much more
efficient than two-dimensional methods and give comparable
results to those for two-dimensional methods, provided that
a suitable radius is chosen for the channel [1, 11]. It is
not appropriate to compute a suitable streamer radius by
considering the radial expansion of an electron avalanche,
due to diffusion, as it grows large enough to distort the
electric field [4]. This is because we are considering not
a single avalanche but many avalanches which are rapidly
absorbed into the anode. Our best guide is to draw the
right streamer radius from the existing literature on two-
dimensional modelling of streamers.

The early two-dimensional modelling of Dhali and
Williams [5] indicated that streamers could propagate at vari-
ous radii depending on the initial electron distribution. How-
ever, the recent results of Vitelloet al[27] show that changing
the initial radius of the electron distribution by a factor of two
changes the initial stages of the streamer development, but

then the streamer reverts to propagating with the same diam-
eter of about 100µm, which is similar to that found by Wang
and Kunhardt [29] and Babaeva and Naidis [1]. Whereas
Vitello et al find their streamer propagating with a relatively
constant radius, Kulikovski [11] computes a streamer whose
diameter varies from 40 to 300µm as the streamer traverses
a 1 cm gap. Thus the question of the appropriate streamer
diameter to use is not well answered at present, but the order
of magnitude is clearly about 100µm.

The Gaussian radial density distribution used in [18]
is used in this paper; however, results of using different
radial distributions are presented, including that for a square
distribution, with a uniform density up to a fixed radius, which
may be closer to the two-dimensional results. The Gaussian
radial density distribution considered here is of the form

ρ(r, z) = ρa(z) e−(r/r0)
2

(10)

whereρa(z) is the axial density distribution andr0 is the
channel radius. The first calculations were obtained using
a 3 kV voltage and varying the channel radius. A Gaussian
profile of 106 cm−3 electron–ion pairs centred 0.095 cm from
the cathode with a half-width of 0.001 cm was used as the
initial charge distribution.

Figure 9 shows the variation of the electric field at
the streamer head (Emax) with the channel radius.Emax
depends weakly on external conditions and, for all variants
of two-dimensional modelling of streamers at atmospheric
air, this is in the range 150–180 kV cm−1 [1]. So the
appropriate channel radius can be chosen to satisfy this
requirement; for an applied voltage of 3 kV this radius is
about 0.01 cm. The streamer calculation is then repeated
for 0.01 cm channel radius. Figures 10, 11, 12 and 13
show the electron, positive-ion, negative-ion and net charge
densities, respectively, at various instants during the streamer
development. The electron density is found to be in the
range (1–1.4)× 1014 cm−3 which agrees with the previously
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Figure 7. The field distribution in the whole of the space domain obtained from the solution of Poisson’s equation at timet = 1.7 ns using
the finite-element method.

Figure 8. The field distribution in the whole of the space domain obtained from the solution of Poisson’s equation at timet = 3.2 ns using
the finite-element method.
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Figure 9. The variation of the maximum streamer field (Emax) with the channel radius.
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Figure 10. Electron densities at 3 kV with a channel radius of 0.01 cm and a Gaussian radial distribution. The instants shown are (from left
to right): 1.42, 2.03, 2.64, 3.22, 3.80, 4.35, 4.88 and 5.39 ns.

published two-dimensional numerical results [1]. Figure 14
shows the electric field distribution at various instants and the
maximum field is found to be in the range 160–180 kV cm−1.
Finally, figure 15 shows the field behind the streamer head at
several instants. A point worth noting is the very low field

obtained during the early stages of the streamer development.
For a short gap and a very sharp point such as the 1 mm
gap and 50µm radius tip, the field at the surface is very
high. Thus substantial ionization is taking place and electrons
are flooding back to the anode at the start of the discharge;
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Figure 11. Positive-ion densities at 3 kV with a channel radius of 0.01 cm and a Gaussian radial distribution. The instants shown are (from
left to right): 1.42, 2.03, 2.64, 3.22, 3.80, 4.35, 4.88 and 5.39 ns.
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Figure 12. Negative-ion densities at 3 kV with a channel radius of 0.01 cm and a Gaussian radial distribution. The instants shown are (from
left to right): 1.42, 2.03, 2.64, 3.22, 3.80, 4.35, 4.88 and 5.39 ns.

consequently there need only be a low field to maintain the
current in the channel left over from the earlier stages, by the
streamer head. Also attachment is very slow; hence electrons

are not lost and thus a high field is not necessary to maintain
the current by conduction or by ionization to create more
current carriers. That is why, during the early stages of the
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Figure 13. Net charge densities at 3 kV with a channel radius of 0.01 cm and a Gaussian radial distribution. The instants shown are (from
left to right): 1.42, 2.03, 2.64, 3.22, 3.80, 4.35, 4.88 and 5.39 ns.
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Figure 14. The field along the axis of symmetry at 3 kV with a channel radius of 0.01 cm and a Gaussian radial distribution. The instants
shown are (from left to right): 1.42, 2.03, 2.64, 3.22, 3.80, 4.35, 4.88 and 5.39 ns.

streamer development, the field behind the streamer in the
small gap is much smaller than what is predicted for wider
gaps (6–8 kV cm−1) [1]. As the streamer advances towards

the cathode, the field in the streamer head rises and most of
the electrical energy is concentrated between the streamer
head and the cathode. Thus ionization occurs more rapidly
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Figure 15. The field behind the streamer head at 3 kV with a channel radius of 0.01 cm and a Gaussian radial distribution. The instants
shown are (from left to right): 2.64, 3.22, 3.80, 4.35, 4.88, 5.39 and 5.87 ns.
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Figure 16. The external circuit current at 3 kV with a channel radius of 0.01 cm: full line; a Gaussian radial charge distribution; and broken
line, a constant radial charge distribution.

over a wider region and the current rises very rapidly. At the
same time attachment is removing electrons from the channel
and the field behind the channel rises steadily to values up
to about 7 kV cm−1 (see figure 15), which agrees with the
two-dimensional predictions (6–8 kV cm−1).

The same calculation is repeated, but this time with a
constant radial distribution and a channel radius of 0.01 cm
with an applied voltage of again 3 kV. The results were found
to be very similar to the results obtained with the Gaussian
profile of 0.01 cm channel radius. Figure 16 shows the
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Figure 17. The field along the axis of symmetry at 1.42 and 2.64 ns with an applied voltage of 3 kV and a streamer radius of 0.01 cm: full
line, a Gaussian radial charge distribution; and (◦), a constant radial charge distribution.
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Figure 18. The external circuit current at 3 kV and 0.01 cm channel radius with various initial charge distributions: full line, a square
distribution centred 0.095 cm from the cathode and of width 0.002 cm; broken line, a Gaussian charge distribution centred 0.095 cm from
the cathode with a half-width of 0.001 cm; and chain line, a Gaussian distribution the same as before but centred 0.085 cm from the cathode.

external circuit current with the Gaussian radial distribution
and the constant radial distribution and figure 17 shows
the field along the axis of symmetry att = 1.42 ns and

2.64 ns. It is evident no significant change in the results is
caused by using the square profile rather than the Gaussian
one.
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Figure 19. The external circuit current versus time at three different applied voltages: full line, 4 kV; broken line, 3.5 kV; and chain
line, 3 kV.
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Figure 20. The streamer speed plotted against time at three different applied voltages: (◦), 3 kV; (♦), 3.5 kV; and (×), 4 kV.

4.3. Initial charge profiles

The effects of various initial distributions are then examined.
Figure 18 shows the current obtained using three different

initial charge distributions to initiate the calculation. The
first is a square charge distribution of length 0.002 cm and
amplitude 106 cm−3 centred 0.095 cm from the cathode.
The second is a Gaussian pulse of amplitude 106 cm−3 and
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Figure 21. The streamer channel radius plotted against the applied voltage.
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Figure 22. The average streamer speed plotted against the applied voltage.

half-width 0.001 cm centred 0.095 cm from the cathode
and the third is the same Gaussian pulse as the second
one but centred 0.085 cm from the cathode. The initial
charge distribution does not change the characteristics of
streamer propagation significantly (except near the anode)
but it introduces different time delays, as shown in figure 18.
Some minor oscillations in the current waveforms in the ‘dip’

following the maximum (see figure 18) are due to the lack of
sufficient spatial resolution somewhere in the space domain.
This kind of instability in the current has been observed
previously by Morrow [17] and can be avoided by having
better spatial resolution, but this clearly is unwanted, for
it would make the calculation even more expensive. The
observed instability, however, does not grow and this is
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Figure 23. The external circuit current at 2.5 kV for a channel radius of 0.008 cm.

because of the use of the FCT method, which is an accurate
and very robust method, for the solution of the continuity
equations.

4.4. Voltage variation

The applied voltage was then varied and its effects on the
streamer speed, channel radius and current were examined.
Three different applied voltages were considered: 3, 3.5 and
4 kV. For the case of 3.5 kV a channel radius of 0.012 cm
gave the maximum field in the range 160–180 kV cm−1,
whereas for 4 kV the channel radius was 0.014 cm. The
electron densities were again found to be in the range
(1–1.5)× 1014 cm−3 for both cases.

Figure 19 shows the temporal evolution of the external
circuit current with the three different applied voltages,
namely 3, 3.5 and 4 kV, and figure 20 shows the streamer
speed at various times during the propagation of the streamer
for these three voltages. The channel radius and the average
streamer speed are plotted against the applied voltage in
figures 21 and 22 and it is found that the channel radius
and average streamer speed increase linearly with the applied
voltage. This is in agreement with the theoretical results
obtained by two-dimensional simulations [1].

Finally a voltage of 2.5 kV was considered with a channel
radius of 0.008 cm (extrapolated from the voltage versus
channel radius curve in figure 21) and this time there was no
streamer formation. Figure 23 shows the current at 2.5 kV.

5. Conclusions

In this paper, the results obtained from a pre-existing finite-
difference code were compared with those obtained from a

new improved finite-element flux-corrected transport code,
for a short-gap streamer calculation and they were found to
be in a very good agreement. Using this new finite-element
method, however, allows one to use unstructured grids which
offer advantages, compared with finite-difference codes, in
that arbitrarily shaped electrodes can be modelled and fewer
unknowns need be used for the same problem. This in turn
requires less computational time.

The numerical results predicted that no streamer formed
at voltages lower than or equal to 2.5 kV and that streamers
formed and bridged the gap for higher voltages. The streamer
speed and channel radius were found to be linear functions
of the applied voltage. Finally, the field behind the streamer
was found to be relatively low during the early stages of
development of the streamer propagation, which is in contrast
to what has been observed for longer gaps and comparable
for the latter stages of the development of the streamer.

Future work involves extending this new improved finite-
element code in two dimensions. The finite-difference code
would be prohibitively time consuming when extended to two
dimensions, due to the large number of unknowns, but with
the use of finite elements the number of unknowns is reduced
significantly, which makes the modelling of streamers in two
dimensions a feasible task. Work on the simulation of a
negative electrical corona and an electrical corona at radio
frequencies is also under way.
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