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We investigate whether, and to what extent, the physical phenomenon of long-
lifetime resonant electromagnetic states with localized slowly-evanescent field 
patterns can be used to transfer energy efficiently, even in the presence of 
extraneous environmental objects. Via detailed theoretical and numerical analyses 
of typical real-world model-situations and realistic material parameters, we 
establish that such a non-radiative scheme could indeed be practical for medium-
range wireless energy transfer. 

 

I. Introduction 

In the early days of electromagnetism, before the electrical-wire grid was deployed, 

serious interest and effort was devoted (most notably by Nikola Tesla [1]) towards the 

development of schemes to transport energy over long distances without any carrier medium 

(e.g. wirelessly). These efforts appear to have met with little, if any, success. Radiative modes of 

omni-directional antennas (which work very well for information transfer) are not suitable for 

such energy transfer, because a vast majority of energy is wasted into free space. Directed 

radiation modes, using lasers or highly-directional antennas, can be efficiently used for energy 

transfer, even for long distances (transfer distance LTRANS»LDEV, where LDEV is the characteristic 

size of the device), but require existence of an uninterruptible line-of-sight and a complicated 

tracking system in the case of mobile objects. Rapid development of autonomous electronics of 

recent years (e.g. laptops, cell-phones, house-hold robots, that all typically rely on chemical 

energy storage) justifies revisiting investigation of this issue. Today, we face a different 

challenge than Tesla: since the existing electrical-wire grid carries energy almost everywhere, 

even a medium-range wireless energy transfer would be quite useful. One scheme currently used 
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for some important applications relies on induction, but it is restricted to very close-range 

(LTRANS«LDEV) energy transfers [2,3,4,5]. In contrast to the currently existing schemes, we 

investigate the feasibility of using long-lived oscillatory resonant electromagnetic modes, with 

localized slowly evanescent field patterns, for wireless non-radiative energy transfer. The basis 

of this method is that two same-frequency resonant objects tend to couple, while interacting 

weakly with other off-resonant environmental objects. The purpose of the present paper is to 

quantify this mechanism using specific examples, namely quantitatively address the following 

questions: up to which distances can such a scheme be efficient and how sensitive is it to 

external perturbations? Our detailed theoretical and numerical analysis show that a mid-range 

(LTRANS ≈ few∗LDEV) wireless energy-exchange can actually be achieved, while suffering only 

modest transfer and dissipation of energy into other off-resonant objects. The omnidirectional 

but stationary (non-lossy) nature of the near field makes this mechanism suitable for mobile 

wireless receivers. It could therefore have a variety of possible applications including for 

example, placing a source (connected to the wired electricity network) on the ceiling of a factory 

room, while devices (robots, vehicles, computers, or similar) are roaming freely within the room. 

Other possible applications include electric-engine buses, RFIDs, and perhaps even nano-robots. 

II. Range and rate of coupling 

The range and rate of the proposed wireless energy-transfer scheme are the first subjects 

of examination, without considering yet energy drainage from the system for use into work. An 

appropriate analytical framework for modeling this resonant energy-exchange is that of 

“coupled-mode theory” [6]. In this picture, the field of the system of two resonant objects 1 and 

2 is approximated by F(r,t)≈ a1(t)F1(r)+a2(t)F2(r), where F1,2(r) are the eigenmodes of 1 and 2 

alone, and then the field amplitudes a1(t) and a2(t) can be shown [6] to satisfy, to lowest order: 

 
( )

( )

1
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2
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da i i a i a
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where ω1,2 are the individual eigenfrequencies, Γ1,2 are the resonance widths due to the objects’ 

intrinsic (absorption, radiation etc.) losses, and κ is the coupling coefficient. Eqs.(1) show that at 

exact resonance (ω1=ω2 and Γ1=Γ2), the eigenmodes of the combined system are split by 2κ; the 

energy exchange between the two objects takes place in time /π κ  and is nearly perfect, apart 

for losses, which are minimal when the coupling rate is much faster than all loss rates (κ»Γ1,2).† It 

is exactly this ratio 1 2/κ Γ Γ  that we will set as our figure-of-merit for any system under 

consideration for wireless energy-transfer, along with the distance over which this ratio can be 

achieved.‡ 

Therefore, our non-radiative-coupling application requires resonant modes of high 

Q=ω/2Γ for low (slow) intrinsic-loss rates Γ and with evanescent tails significantly longer than 

the characteristic sizes of the objects for strong (fast) near-field-coupling rate κ over large 

distances. This is a regime of operation that has not been studied extensively, since one usually 

prefers short tails to minimize interference with nearby devices. Unfortunately, the radiation Q 

usually decreases along with the resonator size, so the above characteristics can only be achieved 

using resonant objects of finite subwavelength size for large relative extent of the non-radiative 

near field (set typically by the wavelength and quantified rigorously by the “radiation caustic”) 

into the surrounding air. Such subwavelength resonances are often accompanied with a high 

radiation Q, so this will typically be the appropriate choice for the possibly-mobile resonant 

device-object d . Note, though, that the resonant source-object s  will in practice often be 

immobile and with less stringent restrictions on its allowed geometry and size, which can be 

therefore chosen large enough so that its radiative losses are negligible (using for example 

waveguides with guided modes tuned close to the “light line” in air for slow exponential decay 

therein). 

The proposed scheme is very general and any type of resonant structure (e.g. 

electromagnetic, acoustic, nuclear) satisfying the above requirements can be used for its 

                                                 
† The limits of validity of the coupled-mode-theory model include this optimal regime of operation, since the weak-
coupling condition κ«ω1,2 also holds for medium-distance coupling, and thus the use of this model is justified and 
the parameters κ, Γ1,2 are well defined. 
‡ Note that interference effects (not captured by coupled-mode theory) between the radiation fields of the two initial 
single-object modes result in radiation-Γ’s for the eigenmodes of the system that are different than but 
approximately average to the initial single-object radiation-Γ’s. 
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implementation. As examples and for definiteness, we choose to work with two well-known, but 

quite different, electromagnetic resonant systems: dielectric disks and capacitively-loaded 

conducting-wire loops. Even without optimization, and despite their simplicity, both will be 

shown to exhibit acceptably good performance. 

a) Dielectric disks 

Consider a 2D dielectric disk resonant object of radius r and permittivity ε surrounded by 

air that supports high-Q whispering-gallery modes (Figure 1). All subsequent calculations for 

this type of resonant disks were performed using numerical finite-difference frequency-domain 

(FDFD) mode-solver simulations (with a resolution of 30pts/r), but analytical methods were also 

used, when applicable, to verify the results. 

The loss mechanisms for the energy stored inside such a resonant system are radiation 

into free space and absorption inside the potentially lossy disk material. High-radiation-Q and 

long-tailed subwavelength resonances can be achieved, when the dielectric permittivity ε is as 

large as practically possible and the azimuthal field variations (of principal number m) are slow 

(namely m is small). Two such TE-polarized dielectric-disk modes with the favorable 

characteristics 1992, / 20radQ rλ= = and 9100, / 10radQ rλ= =  are presented in Figure 1, 

and imply that for a properly designed resonant dielectric object a value of 2000radQ ≥  should 

be achievable. Material absorption is related to the loss tangent, { }/ ImabsQ ε ε∼ , and we will 

assume 410absQ ≥ . 
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Figure 1: Numerical FDFD results for a 2D high-ε disk of radius r along with the electric field (pointing out of the 
page) of its resonant whispering-gallery mode.§ [Side plot: shape of the modal field. In air, it follows a Hankel-
function form: note the initial exponential-like regime (with long tails compared to the small disk size), followed by 
the oscillatory/radiation regime (whose presence means that energy is slowly leaking out of the disk).] For the 
tabulated results material loss Im{ε}/Re{ε}=10-4 has been used. {The specific parameters of the shown plot are 
highlighted with bold in the Table.} 
 

Note that the required values of ε, shown in Figure 1, might at first seem unrealistically 

large. However, not only are there in the microwave regime (appropriate for meter-range 

coupling applications) many materials that have both reasonably high enough dielectric constants 

and low losses (e.g. Titania: ε ≈ 96, Im{ε}/ε ≈ 10-3; Barium tetratitanate: ε ≈ 37, Im{ε}/ε ≈ 10-4; 

Lithium tantalite: ε ≈ 40, Im{ε}/ε ≈ 10-4; etc.) [7,8], but also ε could signify instead the effective 

index of other known subwavelength ( / 1rλ � ) surface-wave systems, such as surface-plasmon 

modes on surfaces of metal-like (negative-ε) materials [9] or metallo-dielectric photonic crystals 

[10]. 

To calculate now the achievable rate of energy transfer, we place two same disks at 

distance D between their centers (Figure 2). The FDFD mode-solver simulations give κ through 

the frequency splitting of the normal modes of the combined system, which are even and odd 

                                                 
§ Note that for the 3D case the computational complexity would be immensely increased, while the physics should 
not be significantly different. For example, a spherical object of ε=147.7 has a whispering gallery mode with m=2, 
Qrad=13962, and λ/r=17. 

single disk / rλ  radQ  absQ  ω= Γ/2Q

Re{ε}=147.7, m=2 20 1992 10093 1664 

Re{ε}=65.6, m=3 10 9100 10094 4786 

0 10 20

10
−4

10
−2

10
0

radius / r

E
 fi

el
d 

[a
.u

.]

|Re{E}|
|E|



 6

superpositions of the initial modes. Then for distances / 10 3D r = − , and for non-radiative 

coupling such that CD r≤ , where rC is the radius of the radiation caustic, we find (Figure 2) 

coupling-to-loss ratios in the range / 1 50κ Γ −∼ . Although the achieved values do not fall in 

the ideal operating regime / 1κ Γ � , they are still large enough to be useful for applications, as 

we will see later on. 

 
 

 

 

 

 

 

 
Figure 2: Numerical FDFD results for medium-distance coupling between two resonant disks. If initially all the 
energy is in one disk, after some time (t=π/2κ) both disks are equally excited to one of the normal modes of their 
combined system. For the tabulated results the normal mode that is odd with respect to the line that connects the two 
disks is used, only distances for non-radiative ( CD r≤ ) coupling are considered, and the Γ ’s are taken to be the 
averages of the corresponding calculated Γ ’s of the two normal modes, where an increase/decrease in radiation Q  
for the system is due to destructive/constructive interference effects. {The specific parameters of the shown plot are 
highlighted with bold in the Table.} 
 
 

two disks /D r  /2ω κ radQ  ω= Γ/2Q κ Γ/

Re{ε}=147.7, m=2 3 47 2478 1989 42.4 

/ 20rλ ≈  5 298 2411 1946 6.5 

≈ 10096absQ  7 770 2196 1804 2.3 

 10 1714 2017 1681 1.0 

Re{ε}=65.6, m=3 3 144 7972 4455 30.9 

/ 10rλ ≈  5 2242 9240 4824 2.2 

≈ 10096absQ  7 7485 9187 4810 0.6 
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b) Capacitively-loaded conducting-wire loops 

Consider N loops of radius r of conducting wire with circular cross-section of radius a 

surrounded by air (Figure 3a). This wire has inductance ( )2 ln 8 / 2oL N r r aμ ⎡ ⎤= −⎣ ⎦  [11], where 

oμ  is the magnetic permeability of free space, so connecting it to a capacitance C will make the 

loop resonant at frequency 1/ LCω = . The nature of the resonance lies in the periodic 

exchange of energy from the electric field inside the capacitor due to the voltage across it to the 

magnetic field in free space due to the current in the wire. 

Losses in this resonant system consist of ohmic loss inside the wire and radiative loss into 

free space. In the desired subwavelength-loop (r«λ) limit, the resistances associated with the two 

loss channels are respectively / 2 /abs oR Nr aμ ρω= ⋅  and ( )42/ 6 /rad oR N r cπ η ω= ⋅  [12], 

where ρ is the resistivity of the wire material and 120  oη π≈ Ω  is the impedance of free space. 

The quality factor of such a resonance is then ( )/ abs radQ L R Rω= +  and is highest for some 

optimal frequency determined by the system parameters: at low frequencies it is dominated by 

ohmic loss and at high frequencies by radiation. The examples presented in Figure 3a show that 

at this optimal frequency expected quality factors in the microwave are 

( )1000 1500absQ N− ⋅∼  and 7500 10000radQ −∼  at / 60 80rλ −∼ , namely suitable for 

near-field coupling. 

The rate for energy transfer between two loops 1 and 2 at distance D between their 

centers (Figure 3b) is given by 12 1 2/ 2M L Lκ ω= , where M is the mutual inductance of the two 

loops. In the limit r«D«λ one can use the quasi-static result ( )2 3
1 2 1 2/ 4 /oM N N r r Dπ μ= ⋅ , 

which means that ( )31 2/ 2 ~ D r rω κ . The examples presented in Figure 3b show that for 

medium distances / 10 3D r = −  the expected coupling-to-loss ratios, which peak at a 

frequency between those where the single-loop Q1,2 peak, are in the range / 0.1 10κ Γ −∼ . 

Now, we are even further from the optimal regime / 1κ Γ � , but still these values will be 

shown to be viable. 
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It is important to appreciate the difference between this inductive scheme and the well-

known close-range inductive schemes for energy transfer [2] in that those schemes are non-

resonant. Using coupled-mode theory it is easy to show that, keeping the geometry and the 

energy stored at the source fixed, the presently proposed resonant-coupling inductive mechanism 

allows for ~Q2 (~106) times more power delivered for work at the mid-range distant device than 

the traditional non-resonant mechanism, and this is why mid-range energy transfer is now 

possible. Capacitively-loaded conductive loops are actually being widely used as resonant 

antennas (for example in cell phones), but those operate in the far-field regime with D/r»1, r/λ~1, 

and the radiation Q’s are intentionally designed to be small to make the antenna efficient, so they 

are not appropriate for energy transfer. 

(a)  (b) 

D

  

 
Figure 3: Analytical results for: (a) A loop of radius r of 
conducting wire, whose cross-section has radius a, loaded 
with a capacitor to enforce resonance at frequency 

1/ LCω = . For the tabulated results one loop (N=1) of 
copper (ρ=1.69·10-8Ωm) wire was used, the dimensions 
were chosen to correspond to a few typical sizes of 
interest for applications, and the frequency of maximum 
Q was considered. (b) Medium-distance coupling 
between two such loops, achieved through the magnetic 
field produced into free space by their currents. The Γ ’s 
are taken to be the same as the corresponding single-
cavity Γ ’s, namely interference effects have been 
neglected. [An example of dissimilar loops is that of r=1m (source on the ceiling) loop and r=30cm (household 
robot on the floor) loop at a distance D=3m (room height) apart, for which 1 2/κ Γ Γ =0.88 peaks at f=6.4MHz.] 

 
 
 
 

single loop λ /r  radQ  absQ ω= Γ/2Q  

r=1cm, a=1mm 79 9025 1419 1227 
r=30cm, a=2mm 59 7977 1283 1105 
r=1m, a=4mm 60 9315 1531 1315 

two loops /D r ω κ/2 ω= Γ/2Q κ Γ/  

r=1cm, a=1mm 3 82 1227 14.9
6 5 379 1227 3.24 

 7 1040 1227 1.18 
 10 3033 1227 0.40 

r=30cm, 
2

3 175 1105 6.31 
 5 810 1105 1.36 
 7 2223 1105 0.50 
 10 6481 1105 0.17 

r=1m, a=4mm 3 193 1315 6.81 
 5 891 1315 1.48 
 7 2446 1315 0.54 
 10 7131 1315 0.18 

a

r

L

C
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III. Influence of extraneous objects 

Clearly, the success of the proposed resonance-based wireless energy-transfer scheme 

depends strongly on the robustness of the objects’ resonances. Therefore, their sensitivity to the 

near presence of random non-resonant extraneous objects is another aspect of the proposed 

scheme that requires analysis. The appropriate analytical model now is that of “perturbation 

theory” [6], which suggests that in the presence of an extraneous object e  the field amplitude 

a1(t) inside the resonant object 1 satisfies, to first order: 

 ( ) ( )1
1 1 1 11 1 1e e

da i i a i i a
dt

ω κ − −= − − Γ + + Γ  (2) 

where again ω1 is the frequency and 1Γ  the intrinsic (absorption, radiation etc.) loss rate, while 

11 eκ −  is the frequency shift induced onto 1 due to the presence of e  and 1 e−Γ  is the extrinsic due 

to e  (absorption inside e , scattering from e  etc.) loss rate**. The frequency shift is a problem 

that can be “fixed” rather easily by applying to every device a feedback mechanism that corrects 

its frequency (e.g. through small changes in geometry) and matches it to that of the source. 

However, the extrinsic loss can be detrimental to the functionality of the energy-transfer scheme, 

because it cannot be remedied, so the total loss rate [ ]1 1 1e e−Γ = Γ + Γ  (and the corresponding 

figure-of-merit [ ] [ ] [ ]1 2/e e eκ Γ Γ , where [ ]eκ  the perturbed coupling rate) must be quantified††. 

a) Dielectric disks 

In the first example of resonant objects that we have considered, namely dielectric disks, 

small, low-index, low-material-loss or far-away stray objects will induce small scattering and 

absorption. In such cases of small perturbations these extrinsic loss mechanisms can be 

quantified using respectively the analytic first-order formulas 

                                                 
** The first-order perturbation-theory model is really only valid for small perturbations. However, the parameters 

11 eκ − , 1 e−Γ  are still well defined, if 1a  is taken to be the amplitude of the exact perturbed mode. 
†† Note that interference effects between the radiation field of the initial resonant-object mode and the field scattered 
off the extraneous object can for strong scattering (e.g. off metallic objects) result in total radiation- 1eΓ ’s that are 
smaller than the initial radiation- 1Γ  (namely 1 e−Γ  is negative!), as will be seen in the examples. 
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( ){ } ( )
2 23

1 1 1Rerad
e ed Uω ε−Γ ∝ ⋅ ∫ r r E r  and ( ){ } ( )

23
1 1 1/4 Imabs
e ed Uω ε−Γ = ⋅ ∫ r r E r , where 

( ) ( ) 23
11 2U d ε= ⋅ ∫ r r E r  is the total resonant electromagnetic energy of the unperturbed 

mode. As one can see, both of these losses depend on the square of the resonant electric field 

tails 1E  at the site of the extraneous object. In contrast, the coupling rate from object 1 to another 

resonant object 2 is ( ) ( ) ( )3
21 1 2 2 1/4 d Uκ ω ε ∗= ⋅ ∫ r r E r E r  and depends linearly on the field 

tails 1E  of 1 inside 2. This difference in scaling gives us confidence that, for exponentially small 

field tails, coupling to other resonant objects should be much faster than all extrinsic loss rates 

( 1 eκ −Γ� ), at least for small perturbations, and thus the energy-trasnfer scheme is expected to 

be sturdy for this class of resonant dielectric disks. 

However, we also want to examine certain possible situations where extraneous objects 

cause perturbations too strong to analyze using the above first-order perturbative approach. For 

example, we place a dielectric disk c  close to another off-resonance object of large { }Re ε , 
{ }Im ε  and of same size but different shape (such as a human being h ), as shown in Figure 4a, 

and a roughened surface of large extent but of small { }Re ε , { }Im ε  (such as a wall w ), as 

shown in Figure 4b. For distances / / 10 3h wD r = −  between the disk-center and the “human”-

center/“wall”, the numerical FDFD simulations presented in Figure 4 suggest that 

[ ] [ ], 1000rad rad
c h c wQ Q ≥  (instead of the initial 2000rad

cQ ≥ ), 410abs
cQ ∼  (naturally unchanged), 

4 25 10 5 10abs
c hQ − ⋅ − ⋅∼ , and 5 410 10abs

c wQ − −∼ , namely the disk resonance seems to be fairly 

robust, since it is not detrimentally disturbed by the presence of extraneous objects, with the 

exception of the very close proximity of high-loss objects. 
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Figure 4: Numerical FDFD results for reduction in Q  of a resonant disk due to scattering from and absorption in 
extraneous objects: (a) a high ε=49+16i (which is large but actually appropriate for human muscles in the GHz 
regime [13]) square object of same size (area) with the disk, and (b) a large roughened surface of ε=2.5+0.05i 
(appropriate for ordinary materials such as concrete, glass, plastic, wood [13]).For the tabulated results disk material 
loss Im{ε}/Re{ε}=10-4 was used and the mode that is odd with respect to the line that connects the two objects. An 
increase in radiation Q  is again due to destructive interference effects. {The specific parameters of the shown plots 
are highlighted with bold in the Tables.} 
 

To examine the influence of large perturbations on an entire energy-transfer system we 

consider two resonant disks in the close presence of both a “human” and a “wall”. The numerical 

FDFD simulations show that the system performance deteriorates from / cκ Γ  (Figure 2) to 

[ ] [ ]/hw c hwκ Γ  (Figure 5) only by acceptably small amounts. 

 

disk with “human” /hD r  
[ ]
rad
c hQ

 abs
c hQ −

 Q=ω/2Γ 

Re{ε}=147.7, m=2 3 981 230 183 

/ 20rλ ≈  5 1984 2917 1057 

10096abs
cQ ≈  7 2230 11573 1578 

 10 2201 41496 1732 

Re{ε}=65.6, m=3 3 6197 1827 1238 

/ 10rλ ≈  5 11808 58431 4978 

10096abs
cQ ≈  7 9931 249748 4908 

 10 9078 867552 4754 

disk with “wall” /wD r
[ ]
rad
c wQ

 abs
c wQ −

 Q=ω/2Γ 

Re{ε}=147.7, m=2 3 1235 16725 1033 

/ 20rλ ≈  5 1922 31659 1536 

10096abs
cQ ≈  7 2389 49440 1859 

 10 2140 82839 1729 

Re{ε}=65.6, m=3 3 6228 53154 3592 

/ 10rλ ≈  5 10988 127402 5053 

10096abs
cQ ≈  7 10168 159192 4910 

 10 9510 191506 4775 
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Figure 5: Numerical FDFD results for reduction in 1 2/κ Γ Γ  of medium-distance coupling between two resonant 
disks due to scattering from and absorption in extraneous objects: both a high ε=49+16i square object of same size 
(area) with the disks and a large roughened surface of ε=2.5+0.05i. If initially all the energy is in one disk, after 
some time (t=π/2κ) both disks are equally excited to one of the normal modes of their combined system, while little 
energy has been lost due to the nearby extraneous objects. For the tabulated results the normal mode that is odd with 
respect to the line that connects the two disks is used, only distances for non-radiative ( CD r≤ ) coupling are 
considered, and the Γ ’s are taken to be the averages of the corresponding calculated Γ ’s of the two normal modes, 
where an increase/decrease in radiation Q  for the system is due to destructive/constructive interference effects. 
{The specific parameters of the shown plot are highlighted with bold in the Table.} 

 

b) Capacitively-loaded conducting-wire loops 

In the second example of resonant objects that we have considered, the conducting-wire 

loops, the influence of extraneous objects on the resonances is nearly absent. The reason is that, 

in the quasi-static regime of operation (r«λ) that we are considering, the near field in the air 

region surrounding the loop is predominantly magnetic (since the electric field is localized inside 

two disks with 
“human” and 

/D r  / 2ω κ  [ ]
rad
c hwQ  abs

c hQ −  abs
c wQ −

 /2c cQ ω= Γ  / cκ Γ  

Re{ε}=147.7, m=2 3 48 536 3300 12774 426 8.8 

/ 20rλ ≈  5 322 1600 5719 26333 1068 3.3 

10096abs
cQ ≈  7 973 3542 13248 50161 2097 2.2 

 10 1768 3624 18447 68460 2254 1.3 

Re{ε}=65.6, m=3 3 141 6764 2088 36661 1328 9.4 

/ 10rλ ≈  5 2114 11945 72137 90289 4815 2.3 

10096abs
cQ ≈  7 8307 12261 237822 129094 5194 0.6 



 13

the capacitor), therefore extraneous objects e  that could interact with this field and act as a 

perturbation to the resonance are those having significant magnetic properties (magnetic 

permeability Re{μ}>1 or magnetic loss Im{μ}>0). Since almost all common materials are non-

magnetic, they respond to magnetic fields in the same way as free space, and thus will not 

disturb the resonance of a conducting-wire loop, so we expect [ ] [ ]/ / 0.1 10e eκ κΓ Γ −∼ ∼ . 

The only perturbation that is expected to affect these resonances is a close proximity of large 

metallic structures. An extremely important implication of this fact relates to safety 

considerations for human beings. Humans are also non-magnetic and can sustain strong magnetic 

fields without undergoing any risk (a typical example where magnetic fields B~1T are safely 

used on humans is the Magnetic Resonance Imaging (MRI) technique for medical testing). 

In comparison of the two classes of resonant systems under examination, the strong 

immunity to extraneous objects and the absence of risks for humans probably makes the 

conducting-wire loops the preferred choice for many real-world applications; on the other hand, 

systems of disks (or spheres) of high (effective) refractive index have the advantage that they are 

also applicable to much smaller length-scales (for example in the optical regime dielectrics 

prevail, since conductive materials are highly lossy). 

 

IV. Efficiency of energy-transfer scheme 

Consider again the combined system of a resonant source s  and device d  in the presence 

of a set of extraneous objects e , and let us now study the efficiency of this resonance-based 

energy-transfer scheme, when energy is being drained from the device at rate workΓ  for use into 

operational work. The coupled-mode-theory equation for the device field-amplitude is 

 [ ]( ) [ ]
d

d e d e s work d
da i i a i a a
dt

ω κ= − − Γ + − Γ , (3) 

where [ ] [ ] [ ] [ ] ( )rad abs rad abs abs
d e d e d e d e d d e−Γ = Γ + Γ = Γ + Γ + Γ  is the net perturbed-device loss rate, and 

similarly we define [ ]s eΓ  for the perturbed-source. Different temporal schemes can be used to 
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extract power from the device (e.g. steady-state continuous-wave drainage, instantaneous 

drainage at periodic times and so on) and their efficiencies exhibit different dependence on the 

combined system parameters. Here, we assume steady state, such that the field amplitude inside 

the source is maintained constant, namely ( ) i t
s sa t Ae ω−= , so then the field amplitude inside 

the device is ( ) i t
d da t A e ω−=  with [ ] [ ]( )/ /d s e d e workA A iκ= Γ + Γ . Then, the useful extracted 

power is 22work work dP A= Γ , the radiated (including scattered) power is 

[ ] [ ]
2 22 2rad rad

rad s e s d e dP A A= Γ + Γ , the power absorbed at the source/device is 

2
/ //2 abs
s d s ds dP A= Γ , and at the extraneous objects 2 22 2abs abs

e s e s d e dP A A− −= Γ + Γ . From 

energy conservation, the total power entering the system is 

total work rad s d eP P P P P P= + + + + . Depending on the targeted application, reasonable 

choices for the work-drainage rate are: [ ]work d eΓ = Γ  (the common impedance-matching 

condition) to minimize the required energy stored in the source or 

[ ] [ ] [ ]
21work d e e d efomΓ = Γ ⋅ + > Γ  to maximize the working efficiency /work work totalP Pη =  for 

some value of the distance-dependent figure-of-merit [ ] [ ] [ ] [ ]/e e s e d efom κ= Γ Γ  of the 

perturbed resonant energy-exchange system. For both choices, workη  is a function of this 

parameter only. It is shown for the optimal choice in Figure 6 with a solid black line, and is 

15%workη >  for [ ] 1efom > , namely large enough for practical applications. The loss 

conversion ratios depend also on the other system parameters, and the most disturbing ones 

(radiation and absorption in stray objects) are plotted in Figure 6 for the two example systems of 

dielectric disks and conducting loops with values for their parameters within the ranges 

determined earlier. 
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Figure 6: (Black line) Efficiency of converting the supplied power into useful work (ηwork) as a function of the 
perturbed coupling-to-loss figure-of-merit, optimized with respect to the power-extracting rate workΓ  (related to the 
load impedance), for all values of the various quality factors that are present in the system. (Blue and red lines) 
Ratios of power conversion respectively into radiation (including scattering from nearby extraneous objects) and 
dissipation inside an extraneous object as a function of the figure-of-merit for dielectric disks of 

[ ] [ ]
310rad rad

s e d eQ Q= ∼  and 410abs abs
s dQ Q= ∼ , and for three values of 4 4 510 ,  5 10 ,  10abs abs

s e d eQ Q− −= = ⋅ . (Green 
line) Ratio of power conversion into radiation for conducting-wire loops of [ ] [ ]

410rad rad
s e d eQ Q= ∼  and 

310abs abs
s dQ Q= ∼ , and assuming abs abs

s e d eQ Q− −= → ∞ . 
 

To get a numerical estimate for a system performance, take, for example, coupling 
distance / 5D r = , a “human” extraneous object at distance / 10hD r = , and that 

10workP W=  must be delivered to the load. Then, for dielectric disks we have 

[ ] [ ]
310rad rad

s h d hQ Q= ∼ , 410abs abs
s dQ Q= ∼ , 45 10abs abs

s h d hQ Q− −= ⋅∼  and [ ] 5hfom ∼ , so from 
Figure 6 we find that 4.4radP W≈  will be radiated to free space, 0.3sP W≈  will be dissipated 
inside the source, 0.2dP W≈  inside the device, and 0.1hP W≈  inside the human. On the other 
hand, for conducting loops we have [ ] [ ]

410rad rad
s h d hQ Q= ∼ , 310abs abs

s dQ Q= ∼ , 
abs abs
s h d hQ Q− −= → ∞  and [ ] 2hfom ∼ , so we find 1.5radP W≈ , 11sP W≈ , 4dP W≈ , and most 

importantly 0hP → . 
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V. Conclusion 

In conclusion, we present a resonance-based scheme for mid-range wireless non-radiative 

energy transfer. Although our consideration has been for a static geometry (namely κ and Γe 

were independent of time), all the results can be applied directly for the dynamic geometries of 

mobile objects, since the energy-transfer time 1κ −  ( μ−∼ 1 100 s  for microwave applications) is 

much shorter than any timescale associated with motions of macroscopic objects. Analyses of 

very simple implementation geometries provide encouraging performance characteristics and 

further improvement is expected with serious design optimization. Thus the proposed mechanism 

is promising for many modern applications. For example, in the macroscopic world, this scheme 

could be used to deliver power to robots and/or computers in a factory room, or electric buses on 

a highway (source-cavity would in this case be a “pipe” running above the highway). In the 

microscopic world, where much smaller wavelengths would be used and smaller powers are 

needed, one could use it to implement optical inter-connects for CMOS electronics, or to transfer 

energy to autonomous nano-objects (e.g. MEMS or nano-robots) without worrying much about 

the relative alignment between the sources and the devices. 

As a venue of future scientific research, enhanced performance should be pursued for 

electromagnetic systems either by exploring different materials, such as plasmonic or 

metallodielectric structures of large effective refractive index, or by fine-tuning the system 

design, for example by exploiting the earlier mentioned interference effects between the 

radiation fields of the coupled objects. Furthermore, the range of applicability could be extended 

to acoustic systems, where the source and device are connected via a common condensed-matter 

object. 
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