TSSP: List Archives

From: Paul
Date: Sat, 16 Feb 2002 12:21:05 +0000
Subject: [TSSP] Inductance of a flat spiral coil

This is a multi-part message in MIME format.
--------------DBE7BDD21045FB266F4F4CC1
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Hi All,

Just a bit of an interesting preprint...for your critical review,

John Tomacic wrote to me reminding me of a web page of Alan Sharp's,
and attached is my reply.

Regards All,
--
Paul Nicholson,
--
--------------DBE7BDD21045FB266F4F4CC1
Content-Type: message/rfc822
Content-Transfer-Encoding: 7bit
Content-Disposition: inline

X-Mozilla-Status2: 00000000
Message-ID: <3C6E4CBF.8DFB19F2@abelian.demon.co.uk>
Date: Sat, 16 Feb 2002 12:12:47 +0000
From: Paul 
X-Mailer: Mozilla 4.77 [en] (X11; U; Linux 2.4.2-2smp i686)
X-Accept-Language: en
MIME-Version: 1.0
To: John Tomacic 
Subject: Re: Flat secondary measurements
References: 
Content-Type: multipart/mixed;
 boundary="------------86473C1FE1AE55039EA92781"

This is a multi-part message in MIME format.
--------------86473C1FE1AE55039EA92781
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Hi John,

Grab some strong coffee, and fasten seat belt...

> http://ourworld.compuserve.com/homepages/alansharp/mathpage.htm

Yes, I've seen this before. Lets just check Alan's conclusion...

Alan writes:
> Lmax for a given length of wire

So we have a fixed wire length and a fixed wire diameter...

> ...for a variety of values of the radius

> The radius of the coil and the length of wire gives you the
> number of turns,

Ok, so we have turns = wirelen/coil_diameter/PI

> the number of turns multiplied by the wire diameter gives you the
> height of the coil.

So, height = turns * wirediam

Alan varied the radius, and derived everything else from that, I'll
instead vary the form factor (=height/coil_diam), so

 turns = wirelen/coil_diam/PI
       = wirelen/(height/form_factor)/PI
       = wirelen * form_factor/(height * PI)

and since the height itself is turns * wirediam,

 turns = wirelen * form_factor/(turns * wirediam * PI)

therefore

 turns = sqrt( wirelen * form_factor/(wirediam * PI))

from which

 radius = height/formfac/2
 height = turns * wirediam

Note that my form factor is the more conventional H/D rather than
Alan's H/R, so we'll expect a max L at H/D = 0.45

A suitable acmi input file is attached.  The results are

FORMFAC|  TURNS| HEIGHT|   CL.r|  CL.h2|   CL.n|      CL.L|   CL.R
  0.100|116.546|  0.117|  0.583|  0.117|  116.5|   31.7 mH|   9.51
  0.150|142.739|  0.143|  0.476|  0.143|  142.7|   34.0 mH|   9.51
  0.200|164.821|  0.165|  0.412|  0.165|  164.8|   35.3 mH|   9.51
  0.250|184.275|  0.184|  0.369|  0.184|  184.3|   36.0 mH|   9.51
  0.300|201.864|  0.202|  0.336|  0.202|  201.9|   36.5 mH|   9.51
  0.350|218.038|  0.218|  0.311|  0.218|  218.0|   36.7 mH|   9.51
  0.400|233.092|  0.233|  0.291|  0.233|  233.1|   36.8 mH|   9.51
  0.450|247.231|  0.247|  0.275|  0.247|  247.2|   36.8 mH|   9.51
  0.500|260.605|  0.261|  0.261|  0.261|  260.6|   36.6 mH|   9.51
  0.550|273.324|  0.273|  0.248|  0.273|  273.3|   36.5 mH|   9.51
  0.600|285.478|  0.285|  0.238|  0.285|  285.5|   36.3 mH|   9.51
  0.650|297.135|  0.297|  0.229|  0.297|  297.1|   36.0 mH|   9.51
  0.700|308.352|  0.308|  0.220|  0.308|  308.4|   35.8 mH|   9.51
  0.750|319.174|  0.319|  0.213|  0.319|  319.2|   35.5 mH|   9.51
  0.800|329.642|  0.330|  0.206|  0.330|  329.6|   35.2 mH|   9.51
  0.850|339.787|  0.340|  0.200|  0.340|  339.8|   34.9 mH|   9.51
  0.900|349.638|  0.350|  0.194|  0.350|  349.6|   34.6 mH|   9.51
  0.950|359.219|  0.359|  0.189|  0.359|  359.2|   34.3 mH|   9.51
  1.000|368.551|  0.369|  0.184|  0.369|  368.6|   33.9 mH|   9.51

So it looks like Alan is correct on H/R = 0.9 as the best for max L
in a solenoid.

I've always assumed that a flat coil would do worse than a solenoid,
because the inner turns hardly have any area and therefore don't
contribute much to the L.  Your observation yesterday made me sit up!
Just shows you can't take anything for granted!

Now lets take the same piece of wire above, and wind a range of flat
coils out of it...

Label the inner and outer radii R1 and R2, so that we can write down

   wirelen = 2 * PI * turns * (R1+R2)/2
and
   R2 = R1 + turns * wirediam

Lets define a 'spiral factor' as (R2-R1)/R2 to describe the shape of
the flat coil, so R1 = R2 * (1-spirfac). Then a spirfac of one gives
a spiral that closes in the middle and spirfac ranges between zero
and one.

Then
   R2 = R2 * (1-spirfac) + turns * wirediam
so
   R2 = turns * wirediam/spirfac

and from the first equation,

 wirelen = PI * turns * (R1+R2)
         = PI * turns * (2*R2 - turns * wirediam)
         = PI * turns * (2*turns*wirediam/spirfac - turns * wirediam)
         = PI * turns^2 * wirediam * (2/spirfac - 1)

So if we compute for a range of spirfac, the other quantities depend
as

 turns = sqrt( wirelen/PI/wirediam/(2/spirfac - 1))
    R2 = turns * wirediam/spirfac
    R1 = turns * wirediam/spirfac * (1-spirfac)

Acmi input file attached.

The output is

SPIRFAC|  TURNS|  CL.r1|  CL.r2|   CL.n|      CL.L|   CL.R
  0.050| 59.015|  1.121|  1.180|   59.0|   22.7 mH|   9.51
  0.100| 84.551|  0.761|  0.846|   84.6|   27.5 mH|   9.51
  0.150|104.944|  0.595|  0.700|  104.9|   30.4 mH|   9.51
  0.200|122.850|  0.491|  0.614|  122.9|   32.3 mH|   9.51
  0.250|139.299|  0.418|  0.557|  139.3|   33.6 mH|   9.51
  0.300|154.822|  0.361|  0.516|  154.8|   34.7 mH|   9.51
  0.350|169.742|  0.315|  0.485|  169.7|   35.4 mH|   9.51
  0.400|184.275|  0.276|  0.461|  184.3|   35.9 mH|   9.51
  0.450|198.581|  0.243|  0.441|  198.6|   36.2 mH|   9.51
  0.500|212.783|  0.213|  0.426|  212.8|   36.4 mH|   9.51
  0.550|226.984|  0.186|  0.413|  227.0|   36.5 mH|   9.51
  0.600|241.273|  0.161|  0.402|  241.3|   36.6 mH|   9.51
  0.650|255.733|  0.138|  0.393|  255.7|   36.4 mH|   9.51
  0.700|270.442|  0.116|  0.386|  270.4|   36.3 mH|   9.51
  0.750|285.478|  0.095|  0.381|  285.5|   36.0 mH|   9.51
  0.800|300.920|  0.075|  0.376|  300.9|   35.7 mH|   9.51
  0.850|316.853|  0.056|  0.373|  316.9|   35.4 mH|   9.51
  0.900|333.367|  0.037|  0.370|  333.4|   35.1 mH|   9.51
  0.950|350.562|  0.018|  0.369|  350.6|   34.9 mH|   9.51

which peaks at spirfac = 0.6, ie when the width of the winding
is 60% of the outer radius.  The resulting L is slightly less than
the same wire wound into the optimum solenoid.

Suggests perhaps that the reason you got such a big gain in L
between your example solenoid and your flat coil, was that your
solenoid was far from its optimum L for the given wire
(formfac=21.9"/5.625"=3.9), whereas your flat spiral was closer
(spirfac=(11.1"-2")/11.1"=0.82) to its optimum of 0.6?

Maybe you'd like to confirm this conclusion, and if you agree with
it, inform the pupman list?

Best Regards
--
Paul Nicholson,
--
--------------86473C1FE1AE55039EA92781
Content-Type: text/plain; charset=us-ascii;
 name="sharp.in"
Content-Transfer-Encoding: 7bit
Content-Disposition: inline;
 filename="sharp.in"

; Sample input file for acmi.
;
; Finding the solenoid form factor which gives highest L for a given
; piece of wire.
;
; See 
; http://ourworld.compuserve.com/homepages/alansharp/mathpage.htm
; 
; This input file demonstrates Alan Sharp's conclusion that the max L for a 
; given piece of wire occurs when H/D is around 0.45

;
; First the fixed quantities 
;
wirelen = 1400 * 12/39.37  ; A fixed 1400 feet (in metres)
wirediam = 0.001           ; A fixed 1 mm diameter wire

;
;  And we'll vary the form factor...
;

formfac = [from 0.1 to 1 step 0.05]  ; Our desired range of form factors

;
;  And now the dependant quantities...
;
  
turns = sqrt( wirelen * formfac/(wirediam * 3.14159))
height = turns * wirediam

;
;  Finally, the coil description.
;
 
coil {
   radius  height/formfac/2
   height1 0
   height2 turns * wirediam

   conductor wirediam/2
   turns turns
}


--------------86473C1FE1AE55039EA92781
Content-Type: text/plain; charset=us-ascii;
 name="flatcoil.in"
Content-Transfer-Encoding: 7bit
Content-Disposition: inline;
 filename="flatcoil.in"

; Sample input file for acmi.
;
; Finding the flat coil dimensions which gives highest L for a given
; piece of wire.
;

;
; First the fixed quantities (same as sharp.in)
;
wirelen = 1400 * 12/39.37  ; A fixed 1400 feet (in metres)
wirediam = 0.001           ; A fixed 1 mm diameter wire

;
;  Defining a 'spiral factor' to be (outer_radius-inner_radius)/outer_radius...
;

spirfac = [from 0.05 to 0.95 step 0.05]  ; Our desired range of spiral factors

;
;  And now the dependant quantities...
;
  
turns = sqrt( wirelen/3.14159/wirediam/(2/spirfac - 1))

;
;  Finally, the coil description.
;
 
coil {
   radius1  turns * wirediam/spirfac * (1-spirfac)    ;  Inner radius
   radius2  turns * wirediam/spirfac                  ;  Outer radius
   height 0

   conductor wirediam/2
   turns turns
}


--------------86473C1FE1AE55039EA92781--


--------------DBE7BDD21045FB266F4F4CC1--


Maintainer Paul Nicholson, paul@abelian.demon.co.uk.